
Xavier Pares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4823807/publications.pdf Version: 2024-02-01

XAVIED DADES

#	Article	IF	CITATIONS
1	Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. Journal of Medicinal Chemistry, 2022, 65, 3833-3848.	2.9	7
2	Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Communications Biology, 2022, 5, 354.	2.0	6
3	Design, Synthesis, Biological Evaluation and In Silico Study of Benzyloxybenzaldehyde Derivatives as Selective ALDH1A3 Inhibitors. Molecules, 2021, 26, 5770.	1.7	8
4	Perspective on the Structural Basis for Human Aldo-Keto Reductase 1B10 Inhibition. Metabolites, 2021, 11, 865.	1.3	1
5	Synthesis of C11-to-C14 methyl-shifted all-trans-retinal analogues and their activities on human aldo-keto reductases. Organic and Biomolecular Chemistry, 2020, 18, 4788-4801.	1.5	1
6	Structural and kinetic features of aldehyde dehydrogenase 1A (ALDH1A) subfamily members, cancer stem cell markers active in retinoic acid biosynthesis. Archives of Biochemistry and Biophysics, 2020, 681, 108256.	1.4	22
7	Engineering aldo-keto reductase 1B10 to mimic the distinct 1B15 topology and specificity towards inhibitors and substrates, including retinoids and steroids. Chemico-Biological Interactions, 2019, 307, 186-194.	1.7	7
8	Efficacy of aldose reductase inhibitors is affected by oxidative stress induced under X-ray irradiation. Scientific Reports, 2019, 9, 3177.	1.6	11
9	Inhibitors of aldehyde dehydrogenases of the 1A subfamily as putative anticancer agents: Kinetic characterization and effect on human cancer cells. Chemico-Biological Interactions, 2019, 306, 123-130.	1.7	17
10	Design, synthesis, structure-activity relationships and X-ray structural studies of novel 1-oxopyrimido[4,5-c]quinoline-2-acetic acid derivatives as selective and potent inhibitors of human aldose reductase. European Journal of Medicinal Chemistry, 2018, 152, 160-174.	2.6	26
11	Structural basis for the inhibition of AKR1B10 by the C3 brominated TTNPB derivative UVI2008. Chemico-Biological Interactions, 2017, 276, 174-181.	1.7	3
12	Characterization of AKR1B16, a novel mouse aldo-keto reductase. Chemico-Biological Interactions, 2017, 276, 182-193.	1.7	4
13	IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors. ACS Chemical Biology, 2016, 11, 2693-2705.	1.6	19
14	Enantioselective Synthesis of Vicinal (<i>R</i> , <i>R</i>)-Diols by Saccharomyces cerevisiae Butanediol Dehydrogenase. Applied and Environmental Microbiology, 2016, 82, 1706-1721.	1.4	14
15	The yeast ζâ€crystallin/NADPH:quinone oxidoreductase (Zta1p) is under nutritional control by the target of rapamycin pathway and is involved in the regulation of argininosuccinate lyase <scp>mRNA</scp> halfâ€life. FEBS Journal, 2015, 282, 1953-1964.	2.2	6
16	Structural Determinants of the Selectivity of 3â€Benzyluracilâ€1â€acetic Acids toward Human Enzymes Aldose Reductase and AKR1B10. ChemMedChem, 2015, 10, 1989-2003.	1.6	13
17	Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase. PLoS ONE, 2015, 10, e0134506.	1.1	17
18	Structural analysis of sulindac as an inhibitor of aldose reductase and AKR1B10. Chemico-Biological Interactions, 2015, 234, 290-296.	1.7	22

XAVIER PARES

#	Article	IF	CITATIONS
19	Human prostaglandin reductase 1 (PGR1): Substrate specificity, inhibitor analysis and site-directed mutagenesis. Chemico-Biological Interactions, 2015, 234, 105-113.	1.7	24
20	A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred. European Journal of Human Genetics, 2014, 22, 419-422.	1.4	19
21	Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 889-903.	2.5	28
22	X-ray structure of the V301L aldo–keto reductase 1B10 complexed with NADP+ and the potent aldose reductase inhibitor fidarestat: Implications for inhibitor binding and selectivity. Chemico-Biological Interactions, 2013, 202, 178-185.	1.7	14
23	Biological Role of Aldo–Keto Reductases in Retinoic Acid Biosynthesis and Signaling. Frontiers in Pharmacology, 2012, 3, 58.	1.6	66
24	Human and rodent aldo–keto reductases from the AKR1B subfamily and their specificity with retinaldehyde. Chemico-Biological Interactions, 2011, 191, 199-205.	1.7	29
25	Three-dimensional Structure and Enzymatic Function of Proapoptotic Human p53-inducible Quinone Oxidoreductase PIG3. Journal of Biological Chemistry, 2009, 284, 17194-17205.	1.6	48
26	Aldo-keto reductases from the AKR1B subfamily: Retinoid specificity and control of cellular retinoic acid levels. Chemico-Biological Interactions, 2009, 178, 171-177.	1.7	70
27	Structural basis for the high <i>all-trans</i> -retinaldehyde reductase activity of the tumor marker AKR1B10. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20764-20769.	3.3	172
28	Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochemical Journal, 2006, 399, 101-109.	1.7	114
29	Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism. Biochemical Journal, 2003, 373, 973-979.	1.7	152
30	Distribution of alcohol dehydrogenase mRNA in the rat central nervous system FEBS Journal, 2001, 268, 5045-5056.	0.2	14
31	Genetic polymorphism of alcohol dehydrogenase in europeans: TheADH2*2 allele decreases the risk for alcoholism and is associated withADH3*1. Hepatology, 2000, 31, 984-989.	3.6	230
32	Retinoids, ï‰-hydroxyfatty acids and cytotoxic aldehydes as physiological substrates, and H2-receptor antagonists as pharmacological inhibitors, of human class IV alcohol dehydrogenase. FEBS Letters, 1998, 426, 362-366.	1.3	69
33	Alcohol dehydrogenase of human and rat blood vessels. FEBS Letters, 1997, 405, 26-30.	1.3	50
34	Molecular modelling of human gastric alcohol dehydrogenase (class IV) and substrate docking: differences towards the classical liver enzyme (class I). FEBS Letters, 1996, 395, 99-102.	1.3	21
35	Arabidopsis Formaldehyde Dehydrogenase. Molecular Properties of Plant Class III Alcohol Dehydrogenase Provide Further Insights into the Origins, Structure and Function of Plant Class P and Liver Class I Alcohol Dehydrogenases. FEBS Journal, 1996, 241, 849-857.	0.2	81
36	Class III alcohol dehydrogenase fromSaccharomyces cerevisiae: Structural and enzymatic features differ toward the human/mammalian forms in a manner consistent with functional needs in formaldehyde detoxication. FEBS Letters, 1995, 370, 23-26.	1.3	39

XAVIER PARES

#	Article	IF	CITATIONS
37	Alcohol Dehydrogenase of Class IV (sigmasigma-ADH) from Human Stomach. cDNA Sequence and Structure/Function Relationships. FEBS Journal, 1994, 224, 549-557.	0.2	65
38	Cephalopod alcohol dehydrogenase: purification and enzymatic characterization. FEBS Letters, 1993, 328, 235-238.	1.3	23
39	Determinants of Ethanol and Acetaldehyde Metabolism in Chronic Alcoholics. Alcoholism: Clinical and Experimental Research, 1993, 17, 48-53.	1.4	33