
Ruth Merrifield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4823641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Size and coating of engineered silver nanoparticles determine their ability to growth-independently inhibit aflatoxin biosynthesis in Aspergillus parasiticus. Applied Microbiology and Biotechnology, 2019, 103, 4623-4632.	3.6	10
2	Quantification of Au Nanoparticle Biouptake and Distribution to Freshwater Algae Using Single Cell – ICP-MS. Environmental Science & Technology, 2018, 52, 2271-2277.	10.0	80
3	Determining the Concentration Dependent Transformations of Ag Nanoparticles in Complex Media: Using SP-ICP-MS and Au@Ag Core–Shell Nanoparticles as Tracers. Environmental Science & Technology, 2017, 51, 3206-3213.	10.0	46
4	A High Resolution Study of Dynamic Changes of Ce ₂ O ₃ and CeO ₂ Nanoparticles in Complex Environmental Media. Environmental Science & Technology, 2017, 51, 8010-8016.	10.0	23
5	Citrate-Coated Silver Nanoparticles Growth-Independently Inhibit Aflatoxin Synthesis in <i>Aspergillus parasiticus</i> . Environmental Science & Technology, 2017, 51, 8085-8093.	10.0	37
6	Molecular toxicity of cerium oxide nanoparticles to the freshwater alga <i>Chlamydomonas reinhardtii</i> is associated with supra-environmental exposure concentrations. Nanotoxicology, 2016, 10, 1-10.	3.0	70