Harald Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4823606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low molecular weight polysialic acid binds to properdin and reduces the activity of the alternative complement pathway. Scientific Reports, 2022, 12, 5818.	1.6	7
2	Phagocytosisâ€related <scp>NADPH</scp> oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides. Glia, 2021, 69, 137-150.	2.5	17
3	A reporter cell system for the triggering receptor expressed on myeloid cells 2 reveals differential effects of diseaseâ€associated variants on receptor signaling and activation by antibodies against the stalk region. Glia, 2021, 69, 1126-1139.	2.5	5
4	Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia, 2021, 69, 1619-1636.	2.5	31
5	Deletion of Alzheimer's diseaseâ€associated <scp>CD33</scp> results in an inflammatory human microglia phenotype. Glia, 2021, 69, 1393-1412.	2.5	59
6	Reporter cell assay for human CD33 validated by specific antibodies and human iPSC-derived microglia. Scientific Reports, 2021, 11, 13462.	1.6	8
7	<i>Uridine diphosphate-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase</i> deletion in mice leads to lethal intracerebral hemorrhage during embryonic development. Glycobiology, 2021, 31, 1478-1489.	1.3	5
8	Low molecular weight polysialic acid prevents lipopolysaccharideâ€induced inflammatory dopaminergic neurodegeneration in humanized <scp><i>SIGLEC11</i></scp> transgenic mice. Glia, 2021, 69, 2845-2862.	2.5	12
9	Targeting sialylation to treat central nervous system diseases. Trends in Pharmacological Sciences, 2021, 42, 998-1008.	4.0	15
10	Control of Innate Immunity by Sialic Acids in the Nervous Tissue. International Journal of Molecular Sciences, 2020, 21, 5494.	1.8	18
11	Reduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice. Neurobiology of Aging, 2020, 88, 91-107.	1.5	24
12	TREM2 triggers microglial density and ageâ€related neuronal loss. Glia, 2019, 67, 539-550.	2.5	84
13	Charged aerosol detector HPLC as a characterization and quantification application of biopharmaceutically relevant polysialic acid from E. coli K1. Journal of Chromatography A, 2019, 1599, 85-94.	1.8	10
14	Single-use membrane adsorbers for endotoxin removal and purification of endogenous polysialic acid from Escherichia coli K1. Biotechnology Reports (Amsterdam, Netherlands), 2018, 17, 110-116.	2.1	15
15	CCL17 exerts a neuroimmune modulatory function and is expressed in hippocampal neurons. Clia, 2018, 66, 2246-2261.	2.5	33
16	Human Induced Pluripotent Stem Cell-Derived Microglia-Like Cells Harboring TREM2 Missense Mutations Show Specific Deficits in Phagocytosis. Cell Reports, 2018, 24, 2300-2311.	2.9	118
17	Polysialic acid production using <i>Escherichia coli</i> K1 in a disposable bag reactor. Engineering in Life Sciences, 2017, 17, 723-731.	2.0	11
18	Intramembranous processing by γâ€secretase regulates reverse signaling of ephrinâ€B2 in migration of microglia. Glia, 2017, 65, 1103-1118.	2.5	13

#	Article	IF	CITATIONS
19	Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Molecular Medicine, 2017, 9, 154-166.	3.3	63
20	Age-related macular degeneration associated polymorphism rs10490924 in ARMS2 results in deficiency of a complement activator. Journal of Neuroinflammation, 2017, 14, 4.	3.1	80
21	Characterization of inflammatory markers and transcriptome profiles of differentially activated embryonic stem cellâ€derived microglia. Glia, 2016, 64, 1007-1020.	2.5	22
22	Polysialylation and lipopolysaccharideâ€induced shedding of Eâ€selectin ligandâ€1 and neuropilinâ€2 by microglia and THPâ€1 macrophages. Glia, 2016, 64, 1314-1330.	2.5	63
23	Sialylation of neurites inhibits complementâ€mediated macrophage removal in a human macrophageâ€neuron Coâ€Culture System. Glia, 2016, 64, 35-47.	2.5	26
24	Loss of the smallest subunit of cytochrome c oxidase, COX8A, causes Leigh-like syndrome and epilepsy. Brain, 2016, 139, 338-345.	3.7	44
25	Anti-inflammatory activity of low molecular weight polysialic acid on human macrophages. Scientific Reports, 2015, 5, 16800.	1.6	64
26	Activated microglia/macrophage whey acidic protein (AMWAP) inhibits NFκB signaling and induces a neuroprotective phenotype in microglia. Journal of Neuroinflammation, 2015, 12, 77.	3.1	47
27	O2â€05â€03: Familial Alzheimer's disease PSEN2 mutations regulate inflammatory micrornas in microglia. Alzheimer's and Dementia, 2015, 11, P184.	0.4	2
28	CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. Journal of Immunology, 2015, 194, 3400-3413.	0.4	115
29	Translocator protein (18ÂkDa) (TSPO) is expressed in reactive retinal microglia and modulates microglial inflammation and phagocytosis. Journal of Neuroinflammation, 2014, 11, 3.	3.1	177
30	Siglec functions of microglia. Glycobiology, 2014, 24, 794-799.	1.3	55
31	Neurodegeneration by Activation of the Microglial Complement-Phagosome Pathway. Journal of Neuroscience, 2014, 34, 8546-8556.	1.7	192
32	Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience, 2014, 275, 113-124.	1.1	43
33	S2-02-02: PHAGOCYTOSIS PATHWAY OF MICROGLIA LINKED TO NEURODEGENERATION. , 2014, 10, P157-P157.		0
34	Microglial activatory (immunoreceptor tyrosineâ€based activation motif)―and inhibitory (immunoreceptor tyrosineâ€based inhibition motif)â€signaling receptors for recognition of the neuronal glycocalyx. Glia, 2013, 61, 37-46.	2.5	97
35	Siglecâ€h on activated microglia for recognition and engulfment of glioma cells. Glia, 2013, 61, 1122-1133.	2.5	69
36	Engineered stem cell-derived microglia as therapeutic vehicle for experimental autoimmune encephalomyelitis. Gene Therapy, 2013, 20, 797-806.	2.3	19

#	Article	IF	CITATIONS
37	Brain microglia: watchdogs with pedigree. Nature Neuroscience, 2013, 16, 253-255.	7.1	31
38	Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer's Disease. Cell, 2013, 153, 707-720.	13.5	1,505
39	Sequential Proteolytic Processing of the Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) Protein by Ectodomain Shedding and γ-Secretase-dependent Intramembranous Cleavage. Journal of Biological Chemistry, 2013, 288, 33027-33036.	1.6	236
40	Variant <i>TREM2</i> as Risk Factor for Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 182-184.	13.9	122
41	Targeting the Cytosolic Innate Immune Receptors RIG-I and MDA5 Effectively Counteracts Cancer Cell Heterogeneity in Glioblastoma. Stem Cells, 2013, 31, 1064-1074.	1.4	76
42	Unique transcriptome signature of mouse microglia. Glia, 2013, 61, 1429-1442.	2.5	105
43	Microglial CD33-Related Siglec-E Inhibits Neurotoxicity by Preventing the Phagocytosis-Associated Oxidative Burst. Journal of Neuroscience, 2013, 33, 18270-18276.	1.7	87
44	Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke. PLoS ONE, 2013, 8, e52982.	1.1	112
45	Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Frontiers in Cellular Neuroscience, 2013, 7, 6.	1.8	469
46	Sialic Acid on the Neuronal Glycocalyx Prevents Complement C1 Binding and Complement Receptor-3-Mediated Removal by Microglia. Journal of Neuroscience, 2012, 32, 946-952.	1.7	112
47	Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor Î ³ . Brain, 2012, 135, 1586-1605.	3.7	51
48	Microglial carbohydrate-binding receptors for neural repair. Cell and Tissue Research, 2012, 349, 215-227.	1.5	29
49	Spatially pathogenic forms of tau detected in Alzheimer's disease brain tissue by fluorescence lifetime-based Förster resonance energy transfer. Journal of Neuroscience Methods, 2010, 192, 127-137.	1.3	2
50	Generation of microglial cells from mouse embryonic stem cells. Nature Protocols, 2010, 5, 1481-1494.	5.5	79
51	Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation. International Journal of Alzheimer's Disease, 2010, 2010, 1-7.	1.1	61
52	Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain, 2010, 133, 2248-2263.	3.7	180
53	Alleviation of Neurotoxicity by Microglial Human Siglec-11. Journal of Neuroscience, 2010, 30, 3482-3488.	1.7	158
54	Dual Induction of TREM2 and Tolerance-Related Transcript, Tmem176b, in Amyloid Transgenic Mice: Implications for Vaccine-Based Therapies for Alzheimer's Disease. ASN Neuro, 2010, 2, AN20100010.	1.5	118

#	Article	IF	CITATIONS
55	Protective effects of microglia in multiple sclerosis. Experimental Neurology, 2010, 225, 24-28.	2.0	137
56	Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB Journal, 2009, 23, 2502-2513.	0.2	127
57	Wild-type Cu/Zn superoxide dismutase (SOD1) does not facilitate, but impedes the formation of protein aggregates of amyotrophic lateral sclerosis causing mutant SOD1. Neurobiology of Disease, 2009, 36, 331-342.	2.1	40
58	Microglial precursors derived from mouse embryonic stem cells. Glia, 2009, 57, 1660-1671.	2.5	43
59	Role of microglia in neuronal degeneration and regeneration. Seminars in Immunopathology, 2009, 31, 513-525.	2.8	126
60	Microglial clearance function in health and disease. Neuroscience, 2009, 158, 1030-1038.	1.1	267
61	Immune-Mediated CNS Damage. Results and Problems in Cell Differentiation, 2009, 51, 173-196.	0.2	27
62	Signal Regulatory Protein-β1. American Journal of Pathology, 2009, 175, 2528-2539.	1.9	66
63	Immunoregulatory Neuroprotection of Cerebral Ischaemia by Haematopoietic Stem and Precursor Cells. European Neurological Review, 2009, 4, 42.	0.5	О
64	Hematopoietic Stem Cells Reduce Postischemic Inflammation and Ameliorate Ischemic Brain Injury. Stroke, 2008, 39, 2867-2875.	1.0	145
65	Debris clearance by microglia: an essential link between degeneration and regeneration. Brain, 2008, 132, 288-295.	3.7	872
66	Neuronal â€~On' and â€~Off' signals control microglia. Trends in Neurosciences, 2007, 30, 596-602.	4.2	690
67	Bystander Killing of Malignant Glioma by Bone Marrow–derived Tumor-Infiltrating Progenitor Cells Expressing a Suicide Gene. Molecular Therapy, 2007, 15, 1373-1381.	3.7	149
68	A retroviral packaging cell line for pseudotype vectors based on glioma-infiltrating progenitor cells. Journal of Gene Medicine, 2007, 9, 335-344.	1.4	7
69	Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. Journal of Neuroimmunology, 2007, 184, 92-99.	1.1	222
70	Brain endothelial PPARÎ ³ controls inflammation-induced CD4+ T cell adhesion and transmigration in vitro. Journal of Neuroimmunology, 2007, 190, 34-43.	1.1	29
71	TREM2-Transduced Myeloid Precursors Mediate Nervous Tissue Debris Clearance and Facilitate Recovery in an Animal Model of Multiple Sclerosis. PLoS Medicine, 2007, 4, e124.	3.9	340
72	Unloading kinesin transported cargoes from the tubulin track via the inflammatory câ€Jun Nâ€ŧerminal kinase pathway. FASEB Journal, 2006, 20, 2573-2575.	0.2	56

#	Article	IF	CITATIONS
73	Suppression of Microglial Inflammatory Activity by Myelin Phagocytosis: Role of p47-PHOX-Mediated Generation of Reactive Oxygen Species. Journal of Neuroscience, 2006, 26, 12904-12913.	1.7	114
74	59. Targeted Gene Therapy of Malignant Clioma with Adult Stem Cells. Molecular Therapy, 2006, 13, S25.	3.7	0
75	Microglia: a cellular vehicle for CNS gene therapy. Journal of Clinical Investigation, 2006, 116, 2857-2860.	3.9	33
76	Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. Journal of Experimental Medicine, 2005, 201, 647-657.	4.2	946
77	LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain, 2005, 128, 1778-1789.	3.7	322
78	Breakdown of Axonal Synaptic Vesicle Precursor Transport by Microglial Nitric Oxide. Journal of Neuroscience, 2005, 25, 352-362.	1.7	71
79	Neuronal injury mediated via stimulation of microglial tollâ€like receptorâ€9 (TLR9). FASEB Journal, 2004, 18, 1-17.	0.2	148
80	Selective Transduction of Malignant Glioma by Lentiviral Vectors Pseudotyped with Lymphocytic Choriomeningitis Virus Glycoproteins. Human Gene Therapy, 2004, 15, 1091-1100.	1.4	65
81	Selective Transduction of Malignant Glioma by Lentiviral Vectors Pseudotyped with Lymphocytic Choriomeningitis Virus Glycoproteins. Human Gene Therapy, 2004, .	1.4	0
82	NEUROSCIENCE: Microglia: The Enemy Within?. Science, 2003, 302, 1689-1690.	6.0	133
83	Neurotrophins. Advances in Experimental Medicine and Biology, 2003, 513, 303-334.	0.8	66
84	Molecular mechanisms of axonal damage in inflammatory central nervous system diseases. Current Opinion in Neurology, 2003, 16, 267-273.	1.8	78
85	Molecular mechanisms of axonal damage in inflammatory central nervous system diseases. Current Opinion in Neurology, 2003, 16, 267-273.	1.8	48
86	Tumor Necrosis Factor Inhibits Neurite Outgrowth and Branching of Hippocampal Neurons by a Rho-Dependent Mechanism. Journal of Neuroscience, 2002, 22, 854-862.	1.7	282
87	Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends in Neurosciences, 2002, 25, 313-319.	4.2	423
88	GewebeschÃ ë igung des zentralen Nervensystems durch zytotoxische CDS+ T·Lymphozyten. E-Neuroforum, 2002, 8, 254-260.	0.2	0
89	Transection of Major Histocompatibility Complex Class I-Induced Neurites by Cytotoxic T Lymphocytes. American Journal of Pathology, 2001, 159, 809-815.	1.9	255
90	Control of glial immune function by neurons. Glia, 2001, 36, 191-199.	2.5	286

#	Article	IF	CITATIONS
91	Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. European Journal of Immunology, 2001, 31, 11-22.	1.6	151
92	Fas Ligand (CD95L) Protects Neurons Against Perforin- Mediated T Lymphocyte Cytotoxicity. Journal of Immunology, 2001, 167, 674-681.	0.4	67
93	MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. European Journal of Immunology, 2000, 30, 3623-3633.	1.6	148
94	Neuronal FasL Induces Cell Death of Encephalitogenic T Lymphocytes. Brain Pathology, 2000, 10, 353-364.	2.1	104
95	The immunological microenvironment in the CNS: implications on neuronal cell death and survival. , 2000, 59, 59-68.		19
96	Neuronal Control of the Immune Response in the Central Nervous System. Journal of Neuropathology and Experimental Neurology, 1998, 57, 1-13.	0.9	113
97	Neurotrophins inhibit major histocompatibility class II inducibility of microglia: Involvement of the p75 neurotrophin receptor. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5779-5784.	3.3	253
98	Immune Surveillance in the Injured Nervous System: T-Lymphocytes Invade the Axotomized Mouse Facial Motor Nucleus and Aggregate around Sites of Neuronal Degeneration. Journal of Neuroscience, 1998, 18, 5804-5816.	1.7	271
99	Major Histocompatibility Complex (MHC) Class I Gene Expression in Single Neurons of the Central Nervous System: Differential Regulation by Interferon (IFN)-γ and Tumor Necrosis Factor (TNF)-α. Journal of Experimental Medicine, 1997, 185, 305-316.	4.2	284
100	Interferon Î ³ Gene Expression in Sensory Neurons: Evidence for Autocrine Gene Regulation. Journal of Experimental Medicine, 1997, 186, 2023-2031.	4.2	131
101	Patch-clamp electro-physiology combined with single-cell RT-PCR. , 1996, , 1677-1685.		0
102	Induction of MHC class I genes in neurons. Science, 1995, 269, 549-552.	6.0	426