Juan Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4823177/juan-li-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43
papers

2,455
citations

22
h-index

44
g-index

44
ext. papers

10.9
ext. citations

10.9
avg, IF
L-index

#	Paper	IF	Citations
43	Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation <i>Science of the Total Environment</i> , 2022 , 823, 153679	10.2	1
42	Transformation and detoxification of sulfamethoxazole by permanganate (Mn(VII)) in the presence of phenolic humic constituents. <i>Chemical Engineering Journal</i> , 2021 , 413, 127534	14.7	4
41	Hydroxylamine driven advanced oxidation processes for water treatment: A review. <i>Chemosphere</i> , 2021 , 262, 128390	8.4	15
40	Sulfite enhanced transformation of iopamidol by UV photolysis in the presence of oxygen: Role of oxysulfur radicals. <i>Water Research</i> , 2021 , 189, 116625	12.5	10
39	Enhanced transformation of organic pollutants by mild oxidants in the presence of synthetic or natural redox mediators: A review. <i>Water Research</i> , 2021 , 189, 116667	12.5	15
38	Mechanism, kinetics and DBP formation of UV/NH2Cl process on contaminant removal in aqueous solution: A review. <i>Chemical Engineering Journal</i> , 2021 , 420, 130405	14.7	4
37	Oxidative transformation of emerging organic contaminants by aqueous permanganate: Kinetics, products, toxicity changes, and effects of manganese products. <i>Water Research</i> , 2021 , 203, 117513	12.5	7
36	Formation of nitrosated and nitrated aromatic products of concerns in the treatment of phenols by the combination of peroxymonosulfate and hydroxylamine. <i>Chemosphere</i> , 2021 , 282, 131057	8.4	1
35	Oxidation of iodide and hypoiodous acid by non-chlorinated water treatment oxidants and formation of iodinated organic compounds: A review. <i>Chemical Engineering Journal</i> , 2020 , 386, 123822	14.7	9
34	Ferrate Oxidation of Phenolic Compounds in Iodine-Containing Water: Control of Iodinated Aromatic Products. <i>Environmental Science & Environmental Sci</i>	10.3	14
33	Chlorination and bromination of olefins: Kinetic and mechanistic aspects. <i>Water Research</i> , 2020 , 187, 116424	12.5	6
32	Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts. <i>Water Research</i> , 2020 , 185, 116234	12.5	11
31	Formation and control of bromate in sulfate radical-based oxidation processes for the treatment of waters containing bromide: A critical review. <i>Water Research</i> , 2020 , 176, 115725	12.5	29
30	Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants. <i>Chemosphere</i> , 2019 , 228, 602-610	8.4	8
29	Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols: Kinetics, products, and involvement of Fe(V)/Fe(IV). <i>Water Research</i> , 2019 , 156, 1-8	12.5	45
28	Oxidation of methylparaben (MeP) and p-hydroxybenzoic acid (p-HBA) by manganese dioxide (MnO) and effects of iodide: Efficiency, products, and toxicity. <i>Science of the Total Environment</i> , 2019 , 661, 670-677	10.2	12
27	A novel strategy using peroxymonosulfate to control the formation of iodinated aromatic products in treatment of phenolic compounds by permanganate. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1515-1522	4.2	3

(2017-2019)

26	Degradation of iopamidol by three UV-based oxidation processes: Kinetics, pathways, and formation of iodinated disinfection byproducts. <i>Chemosphere</i> , 2019 , 221, 270-277	8.4	35
25	Transformation of bisphenol AF and bisphenol S by permanganate in the absence/presence of iodide: Kinetics and products. <i>Chemosphere</i> , 2019 , 217, 402-410	8.4	22
24	Comparative study on degradation of propranolol and formation of oxidation products by UV/HO and UV/persulfate (PDS). <i>Water Research</i> , 2019 , 149, 543-552	12.5	56
23	A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: Preparation and performance evaluation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 561, 364-372	5.1	34
22	Transformation of Methylparaben by aqueous permanganate in the presence of iodide: Kinetics, modeling, and formation of iodinated aromatic products. <i>Water Research</i> , 2018 , 135, 75-84	12.5	19
21	Chlorination of bisphenol S: Kinetics, products, and effect of humic acid. Water Research, 2018, 131, 208	3-23.3	39
20	Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling. <i>Water Research</i> , 2018 , 138, 56-66	12.5	98
19	Oxidation of theophylline by Ferrate (VI) and formation of disinfection byproducts during subsequent chlorination. <i>Separation and Purification Technology</i> , 2018 , 201, 283-290	8.3	11
18	Transformation of phenolic compounds by peroxymonosulfate in the presence of iodide and formation of iodinated aromatic products. <i>Chemical Engineering Journal</i> , 2018 , 335, 855-864	14.7	31
17	Transformation of bisphenol AF and bisphenol S by manganese dioxide and effect of iodide. <i>Water Research</i> , 2018 , 143, 47-55	12.5	44
16	Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I/HA system. <i>Water Research</i> , 2018 , 144, 592-602	12.5	30
15	Oxidation of bisphenol A by nonradical activation of peroxymonosulfate in the presence of amorphous manganese dioxide. <i>Chemical Engineering Journal</i> , 2018 , 352, 1004-1013	14.7	102
14	Interpreting the effects of natural organic matter on antimicrobial activity of AgS nanoparticles with soft particle theory. <i>Water Research</i> , 2018 , 145, 12-20	12.5	25
13	Double Replication MDS Codes for Wireless D2D Distributed Storage Networks 2018 ,		2
12	Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: Photooxidation, oxidation and adsorption. <i>Water Research</i> , 2018 , 147, 264-275	12.5	80
11	Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination?. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	216
10	Unrecognized role of bisulfite as Mn(III) stabilizing agent in activating permanganate (Mn(VII)) for enhanced degradation of organic contaminants. <i>Chemical Engineering Journal</i> , 2017 , 327, 418-422	14.7	46
9	Degradation of sulfamethoxazole by UV, UV/HO and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate. <i>Water Research</i> , 2017 , 118, 196-207	12.5	299

8	Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 479-487	10.3	56
7	Kinetics of Oxidation of Iodide (Inand Hypoiodous Acid (HOI) by Peroxymonosulfate (PMS) and Formation of Iodinated Products in the PMS/INOM System. <i>Environmental Science and Technology Letters</i> , 2017 , 4, 76-82	11	49
6	Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. <i>Water Research</i> , 2017 , 125, 209-218	12.5	152
5	Iodine Atom or Hypoiodous Acid? Comment on "Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms". <i>Environmental Science & Discours</i> (1984) 2017, 51, 9410-9411	10.3	7
4	Oxidation of the odorous compound 2,4,6-trichloroanisole by UV activated persulfate: Kinetics, products, and pathways. <i>Water Research</i> , 2016 , 96, 12-21	12.5	148
3	Research on Smart Community Planning of Yishanwan, China towards New Urbanization. International Review for Spatial Planning and Sustainable Development, 2016 , 4, 78-90	1	6
2	Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid. <i>Environmental Science & Environmental Scien</i>	10.3	52
1	Activation of Peroxymonosulfate by Benzoquinone: A Novel Nonradical Oxidation Process. <i>Environmental Science & Discourse Comp.</i> 2015, 49, 12941-50	10.3	602