Stefan Lüpold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4822479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction and enrichment analyses of the <i>Homo sapiens-Drosophila melanogaster</i> COPD-related orthologs: potential for modeling of human COPD genomic responses with the fruit fly. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R77-R82.	1.8	3
2	The Drosophila septate junctions beyond barrier function: Review of the literature, prediction of human orthologs of the SJâ€related proteins and identification of protein domain families. Acta Physiologica, 2021, 231, e13527.	3.8	7
3	Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells, 2021, 10, 1062.	4.1	5
4	How biases in sperm storage relate to sperm use during oviposition in female yellow dung flies. Behavioral Ecology, 2021, 32, 756-768.	2.2	4
5	Conditionâ€dependent interaction between mating success and competitive fertilization success inÂ <i>Drosophila melanogaster</i> *. Evolution; International Journal of Organic Evolution, 2021, 75, 2014-2026.	2.3	18
6	Sperm depletion in relation to developmental nutrition and genotype in <i>Drosophila melanogaster</i> . Evolution; International Journal of Organic Evolution, 2021, 75, 2830-2841.	2.3	11
7	How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200064.	4.0	90
8	How female × male and male × male interactions influence competitive fertilization in <i>Drosophila melanogaster</i> . Evolution Letters, 2020, 4, 416-429.	3.3	34
9	Fitness consequences of the combined effects of veterinary and agricultural pesticides on a non-target insect. Chemosphere, 2020, 250, 126271.	8.2	11
10	Relative Brain Size Is Predicted by the Intensity of Intrasexual Competition in Frogs. American Naturalist, 2020, 196, 169-179.	2.1	18
11	Exposure of Drosophila melanogaster to cigarette smoke extract changes its sexual behavior. , 2020, , .		2
12	Sexual ornaments but not weapons trade off against testes size in primates. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182542.	2.6	20
13	Sperm quality and quantity evolve through different selective processes in the Phasianidae. Scientific Reports, 2019, 9, 19278.	3.3	10
14	Sperm form and function: what do we know about the role of sexual selection?. Reproduction, 2018, 155, R229-R243.	2.6	92
15	Interrelations of global macroecological patterns in wing and thorax size, sexual size dimorphism, and range size of the Drosophilidae. Ecography, 2018, 41, 1707-1717.	4.5	25
16	The evolution of maleâ€biased sexual size dimorphism is associated with increased body size plasticity in males. Functional Ecology, 2018, 32, 581-591.	3.6	48
17	Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation?. Evolution; International Journal of Organic Evolution, 2018, 72, 4-17.	2.3	46
18	Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. Evolution; International Journal of Organic Evolution, 2017, 71, 1686-1699.	2.3	54

Stefan Lüpold

#	Article	IF	CITATIONS
19	Greater sperm complexity in the Australasian old endemic rodents (Tribe: Hydromyini) is associated with increased levels of inter-male sperm competition. Reproduction, Fertility and Development, 2017, 29, 921.	0.4	16
20	Evolutionary Trade-Off between Secondary Sexual Traits and Ejaculates. Trends in Ecology and Evolution, 2017, 32, 964-976.	8.7	128
21	How sexual selection can drive the evolution of costly sperm ornamentation. Nature, 2016, 533, 535-538.	27.8	150
22	Altitude underlies variation in the mating system, somatic condition, and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis). Behavioral Ecology and Sociobiology, 2016, 70, 1197-1208.	1.4	42
23	Genetic diversity does not explain variation in extraâ€pair paternity in multiple populations of a songbird. Journal of Evolutionary Biology, 2015, 28, 1156-1169.	1.7	14
24	No evidence for a tradeâ€off between sperm length and male premating weaponry. Journal of Evolutionary Biology, 2015, 28, 2187-2195.	1.7	17
25	Sperm number trumps sperm size in mammalian ejaculate evolution. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152122.	2.6	43
26	Evolution: Big Bawls, Small Balls. Current Biology, 2015, 25, R1084-R1086.	3.9	2
27	Sexual selection and the evolution of sperm quality. Molecular Human Reproduction, 2014, 20, 1180-1189.	2.8	158
28	Alternative mating tactics in the yellow dung fly: resolving mechanisms of small-male advantage off pasture. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132164.	2.6	12
29	Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nature Communications, 2014, 5, 3184.	12.8	120
30	No inbreeding depression in sperm storage ability or offspring viability in Drosophila melanogaster females. Journal of Insect Physiology, 2014, 60, 1-6.	2.0	3
31	Postcopulatory Sexual Selection Generates Speciation Phenotypes in Drosophila. Current Biology, 2013, 23, 1853-1862.	3.9	99
32	An Analytical Framework for Estimating Fertilization Bias and the Fertilization Set from Multiple Sperm-Storage Organs. American Naturalist, 2013, 182, 552-561.	2.1	49
33	RAPID DIVERSIFICATION OF SPERM PRECEDENCE TRAITS AND PROCESSES AMONG THREE SIBLING <i>DROSOPHILA</i> SPECIES. Evolution; International Journal of Organic Evolution, 2013, 67, 2348-2362.	2.3	78
34	EJACULATE QUALITY AND CONSTRAINTS IN RELATION TO SPERM COMPETITION LEVELS AMONG EUTHERIAN MAMMALS. Evolution; International Journal of Organic Evolution, 2013, 67, n/a-n/a.	2.3	43
35	Opening a window onto sperm competition. Molecular Reproduction and Development, 2013, 80, 79-79.	2.0	1
36	Female mediation of competitive fertilization success in <i>Drosophila melanogaster</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10693-10698.	7.1	108

Stefan LÃ¹/4 pold

#	Article	IF	CITATIONS
37	Inbreeding reveals mode of past selection on male reproductive characters in <i><scp>D</scp>rosophila melanogaster</i> . Ecology and Evolution, 2013, 3, 2089-2102.	1.9	23
38	How Multivariate Ejaculate Traits Determine Competitive Fertilization Success in Drosophila melanogaster. Current Biology, 2012, 22, 1667-1672.	3.9	122
39	Seasonal variation in ejaculate traits of male red-winged blackbirds (Agelaius phoeniceus). Behavioral Ecology and Sociobiology, 2012, 66, 1607-1617.	1.4	28
40	Covariance among premating, postâ€copulatory and viability fitness components in <i>Drosophila melanogaster</i> and their influence on paternity measurement. Journal of Evolutionary Biology, 2012, 25, 1555-1563.	1.7	32
41	MALDI-TOF mass spectrometry as a simple tool to determine the phospholipid/glycolipid composition of sperm: Pheasant spermatozoa as one selected example. Animal Reproduction Science, 2011, 123, 270-278.	1.5	17
42	NO EVIDENCE FOR POSTCOPULATORY INBREEDING AVOIDANCE IN DROSOPHILA MELANOGASTER. Evolution; International Journal of Organic Evolution, 2011, 65, 2699-2705.	2.3	32
43	Geographical variation in sperm morphology in the red-winged blackbird (Agelaius phoeniceus). Evolutionary Ecology, 2011, 25, 373-390.	1.2	29
44	They produce the sperm, but whose is it? The 11th Biology of Spermatozoa Meeting, September 5-9, 2011–Derbyshire UK. Spermatogenesis, 2011, 1, 339-340.	0.8	0
45	Male Drosophila melanogaster adjust ejaculate size based on female mating status, fecundity, and age. Behavioral Ecology, 2011, 22, 184-191.	2.2	154
46	Sperm competition leads to functional adaptations in avian testes to maximize sperm quantity and quality. Reproduction, 2011, 141, 595-605.	2.6	32
47	Resolving variation in the reproductive tradeoff between sperm size and number. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5325-5330.	7.1	160
48	Sperm design and variation in the New World blackbirds (Icteridae). Behavioral Ecology and Sociobiology, 2009, 63, 899-909.	1.4	58
49	SPERM COMPETITION SELECTS BEYOND RELATIVE TESTES SIZE IN BIRDS. Evolution; International Journal of Organic Evolution, 2009, 63, 391-402.	2.3	97
50	Sperm morphology and sperm velocity in passerine birds. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1175-1181.	2.6	188
51	Bat genitalia: allometry, variation and good genes. Biological Journal of the Linnean Society, 2004, 83, 497-507.	1.6	61
52	Social interactions among wild female Bechstein's bats (Myotis bechsteinii) living in a maternity colony. Acta Ethologica, 2003, 5, 107-114.	0.9	47
53	The Lure Effect, Tadpole Tail Shape, and the Target of Dragonfly Strikes. Journal of Herpetology, 2003, 37, 420-424.	0.5	117
54	Female accessory gland fluid promotes sperm survival in yellow dung flies. Alpine Entomology, 0, 5, 95-100.	0.2	1