
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4822371/publications.pdf Version: 2024-02-01

DETE NOVAK

#	Article	IF	CITATIONS
1	RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 2013, 29, 792-793.	4.1	619
2	Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics, 2010, 11, 378.	2.6	403
3	A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019, 51, 1411-1422.	21.4	363
4	Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 2019, 10, 1.	3.6	265
5	TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 2017, 45, e111-e111.	14.5	222
6	Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution Â. Plant Cell, 2012, 24, 3559-3574.	6.6	221
7	Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids, 2015, 47, 603-615.	2.7	175
8	Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13343-13346.	7.1	173
9	In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE, 2015, 10, e0143424.	2.5	172
10	Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicology and Applied Pharmacology, 2013, 268, 132-140.	2.8	153
11	Next Generation Sequencing Reveals Genome Downsizing in Allotetraploid Nicotiana tabacum, Predominantly through the Elimination of Paternally Derived Repetitive DNAs. Molecular Biology and Evolution, 2011, 28, 2843-2854.	8.9	150
12	Agglomerative Epigenetic Aberrations Are a Common Event in Human Breast Cancer. Cancer Research, 2008, 68, 8616-8625.	0.9	146
13	Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols, 2020, 15, 3745-3776.	12.0	144
14	Analysis of Global and Absorption, Distribution, Metabolism, and Elimination Gene Expression in the Progressive Stages of Human Nonalcoholic Fatty Liver Disease. Drug Metabolism and Disposition, 2011, 39, 1954-1960.	3.3	141
15	Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains. PLoS Genetics, 2012, 8, e1002777.	3.5	127
16	Genomic Repeat Abundances Contain Phylogenetic Signal. Systematic Biology, 2015, 64, 112-126.	5.6	126
17	Analysis of the giant genomes of <i><scp>F</scp>ritillaria</i> (<scp>L</scp> iliaceae) indicates that a lack of <scp>DNA</scp> removal characterizes extreme expansions in genome size. New Phytologist, 2015, 208, 596-607.	7.3	122
18	The Adaptive Endoplasmic Reticulum Stress Response to Lipotoxicity in Progressive Human Nonalcoholic Fatty Liver Disease. Toxicological Sciences, 2014, 137, 26-35.	3.1	121

#	Article	IF	CITATIONS
19	Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis, 2008, 29, 1500-1508.	2.8	113
20	Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization. Cancer Research, 2009, 69, 5251-5258.	0.9	113
21	Diploidization and genome size change in allopolyploids is associated with differential dynamics of low―and highâ€copy sequences. Plant Journal, 2013, 74, 829-839.	5.7	112
22	Epigenetic Inactivation of the HOXA Gene Cluster in Breast Cancer. Cancer Research, 2006, 66, 10664-10670.	0.9	109
23	Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia. PLoS ONE, 2011, 6, e27335.	2.5	97
24	Holocentromeres in <i>Rhynchospora</i> are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13633-13638.	7.1	96
25	Repeat-sequence turnover shifts fundamentally in species with large genomes. Nature Plants, 2020, 6, 1325-1329.	9.3	87
26	The holocentric species <i><scp>L</scp>uzula elegans</i> shows interplay between centromere and largeâ€scale genome organization. Plant Journal, 2013, 73, 555-565.	5.7	86
27	Next-Generation Sequencing Reveals the Impact of Repetitive DNA Across Phylogenetically Closely Related Genomes of Orobanchaceae. Molecular Biology and Evolution, 2012, 29, 3601-3611.	8.9	82
28	Independent, Rapid and Targeted Loss of Highly Repetitive DNA in Natural and Synthetic Allopolyploids of Nicotiana tabacum. PLoS ONE, 2012, 7, e36963.	2.5	77
29	Characterization of repeat arrays in ultraâ€long nanopore reads reveals frequent origin of satellite DNA from retrotransposonâ€derived tandem repeats. Plant Journal, 2020, 101, 484-500.	5.7	76
30	Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome. G3: Genes, Genomes, Genetics, 2011, 1, 85-92.	1.8	75
31	Highâ€copy sequences reveal distinct evolution of the rye B chromosome. New Phytologist, 2013, 199, 550-558.	7.3	75
32	Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in <i>Solanum</i> Species: Rapid Evolution of DNA Sequences Associated with Centromeres Â. Plant Cell, 2014, 26, 1436-1447.	6.6	73
33	Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of <i>CenH3</i> Gene in <i>Fabeae</i> Species. Molecular Biology and Evolution, 2015, 32, 1862-1879.	8.9	69
34	Impaired Nâ€linked glycosylation of uptake and efflux transporters in human nonâ€alcoholic fatty liver disease. Liver International, 2017, 37, 1074-1081.	3.9	68
35	Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Scientific Reports, 2018, 8, 5838.	3.3	66
36	Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle, 2014, 13, 3423-3435.	2.6	60

#	Article	IF	CITATIONS
37	Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma, 2017, 126, 325-335.	2.2	59
38	Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Annals of Botany, 2014, 114, 1597-1608.	2.9	58
39	Contrasting Patterns of Transposable Element and Satellite Distribution on Sex Chromosomes (XY1Y2) in the Dioecious Plant Rumex acetosa. Genome Biology and Evolution, 2013, 5, 769-782.	2.5	55
40	Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae). Systematic Biology, 2018, 67, 1010-1024.	5.6	54
41	Genome-Wide Analysis of Repeat Diversity across the Family Musaceae. PLoS ONE, 2014, 9, e98918.	2.5	54
42	p53 induces distinct epigenetic states at its direct target promoters. BMC Genomics, 2008, 9, 486.	2.8	49
43	Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Research and Treatment, 2015, 149, 121-131.	2.5	48
44	Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus. Plant Genome, 2015, 8, eplantgenome2015.04.0021.	2.8	45
45	Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicology and Applied Pharmacology, 2009, 241, 221-229.	2.8	44
46	Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Bioinformatics, 2010, 26, 2101-2108.	4.1	43
47	Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Molecular Biology and Evolution, 2020, 37, 2341-2356.	8.9	42
48	Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus <i>Genlisea</i> . Plant Journal, 2015, 84, 1087-1099.	5.7	41
49	Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model. Obesity, 2017, 25, 1069-1076.	3.0	41
50	Characterization of Hepatocellular Carcinoma Related Genes and Metabolites in Human Nonalcoholic Fatty Liver Disease. Digestive Diseases and Sciences, 2014, 59, 365-374.	2.3	39
51	Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats. Genome Biology and Evolution, 2012, 4, 575-585.	2.5	38
52	Differential Genome Size and Repetitive DNA Evolution in Diploid Species of Melampodium sect. Melampodium (Asteraceae). Frontiers in Plant Science, 2020, 11, 362.	3.6	37
53	Cloning and characterisation of chs-specific DNA and cDNA sequences from hop (Humulus lupulus L.). Plant Science, 2002, 162, 1007-1018.	3.6	34
54	Chalcone synthase homologues from Humulus lupulus: some enzymatic properties and expression. Biologia Plantarum, 2006, 50, 48-54.	1.9	27

#	Article	IF	CITATIONS
55	Flow Sorting and Sequencing Meadow Fescue Chromosome 4F. Plant Physiology, 2013, 163, 1323-1337.	4.8	27
56	Cloning and Molecular Analysis of the Regulatory FactorHlMyb1in Hop (Humulus lupulusL.) and the Potential of Hop To Produce Bioactive Prenylated Flavonoids. Journal of Agricultural and Food Chemistry, 2005, 53, 4793-4798.	5.2	26
57	Nondisjunction and unequal spindle organization accompany the drive of <i>Aegilops speltoides</i> B chromosomes. New Phytologist, 2019, 223, 1340-1352.	7.3	26
58	A widespread occurrence of extra open reading frames in plant Ty3/gypsy retrotransposons. Genetica, 2011, 139, 1543-1555.	1.1	23
59	Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Scientific Reports, 2020, 10, 19230.	3.3	23
60	Cell-Type Specific DNA Methylation Patterns Define Human Breast Cellular Identity. PLoS ONE, 2012, 7, e52299.	2.5	22
61	Impact of parasitic lifestyle and different types of centromere organization on chromosome and genome evolution in the plant genus <i>Cuscuta</i> . New Phytologist, 2021, 229, 2365-2377.	7.3	22
62	Valerophenone synthase-like chalcone synthase homologues in Humulus lupulus. Biologia Plantarum, 2003, 46, 375-381.	1.9	20
63	Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology, 2012, 291, 102-112.	4.2	20
64	The Dark Matter of Large Cereal Genomes: Long Tandem Repeats. International Journal of Molecular Sciences, 2019, 20, 2483.	4.1	19
65	Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis. Biochemical Pharmacology, 2016, 122, 62-71.	4.4	16
66	Accessing a Russian Wheat Aphid Resistance Gene in Bread Wheat by Longâ€Read Technologies. Plant Genome, 2019, 12, 180065.	2.8	15
67	Karyotypes and Distribution of Tandem Repeat Sequences in <i>Brassica nigra</i> Determined by Fluorescence in situ Hybridization. Cytogenetic and Genome Research, 2017, 152, 158-165.	1.1	10
68	Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads. Computational and Structural Biotechnology Journal, 2021, 19, 2179-2189.	4.1	9
69	Chromatin organization and cytological features of carnivorous Genlisea species with large genome size differences. Frontiers in Plant Science, 2015, 6, 613.	3.6	5
70	Expression of selected pathway-marker genes in human urothelial cells exposed chronically to a non-cytotoxic concentration of monomethylarsonous acid. Toxicology Reports, 2014, 1, 421-434.	3.3	3
71	Genome invasion by a hypomethylated satellite repeat in Australian crucifer Ballantinia antipoda. Plant Journal, 2019, 99, 1066-1079.	5.7	3
72	Characterization of a novel radiationâ€induced sarcoma cell line. Journal of Surgical Oncology, 2015, 111, 669-682.	1.7	2

#	Article	IF	CITATIONS
73	The Repetitive Content in Lupin Genomes. Compendium of Plant Genomes, 2020, , 161-186.	0.5	2
74	THE ESTABLISHMENT AND SCREENING OF HOP GENOMIC AND CDNA LIBRARIES FOR GENES DETERMINING LUPULIN PRODUCTION. Acta Horticulturae, 2005, , 81-84.	0.2	0
75	Abstract 1200: Characterization of a novel radiation-induced sarcoma cell line. , 2014, , .		0