
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4822187/publications.pdf Version: 2024-02-01

<u> Снім-Існі Целмі</u>

#	Article	IF	CITATIONS
1	Human deafness-associated variants alter the dynamics of key molecules in hair cell stereocilia F-actin cores. Human Genetics, 2022, 141, 363-382.	1.8	12
2	Detailed clinical features and genotype–phenotype correlation in an OTOF-related hearing loss cohort in Japan. Human Genetics, 2022, 141, 865-875.	1.8	3
3	Prevalence and clinical features of autosomal dominant and recessive TMC1-associated hearing loss. Human Genetics, 2022, 141, 929-937.	1.8	6
4	The genetic etiology of hearing loss in Japan revealed by the social health insurance-based genetic testing of 10K patients. Human Genetics, 2022, 141, 665-681.	1.8	25
5	Genetic background in late-onset sensorineural hearing loss patients. Journal of Human Genetics, 2022, 67, 223-230.	1.1	9
6	Frequency of the STRC-CATSPER2 deletion in STRC-associated hearing loss patients. Scientific Reports, 2022, 12, 634.	1.6	6
7	Variants in CDH23 cause a broad spectrum of hearing loss: from non-syndromic to syndromic hearing loss as well as from congenital to age-related hearing loss. Human Genetics, 2022, 141, 903-914.	1.8	6
8	Speech perception in noise in patients with idiopathic sudden hearing loss. Acta Oto-Laryngologica, 2022, 142, 302-307.	0.3	4
9	Etiology of hearing loss affects auditory skill development and vocabulary development in pediatric cochlear implantation cases. Acta Oto-Laryngologica, 2022, 142, 308-315.	0.3	4
10	A familial case of inherited autosomal-dominant non-syndromic hearing loss caused by a <i>TECTA</i> mutation in the zona pellucida domain of alpha-tectorin: indication of elevation of hearing thresholds in high frequencies with age. Audiology Japan, 2022, 65, 145-151.	0.1	0
11	Cochlear implantation in a patient with a POU4F3 mutation. Clinical Case Reports (discontinued), 2021, 9, 298-303.	0.2	2
12	Improvement of a Rapid and Highly Sensitive Method for the Diagnosis of the Mitochondrial m.1555A>G Mutation Based on a Single-Stranded Tag Hybridization Chromatographic Printed-Array Strip. Genetic Testing and Molecular Biomarkers, 2021, 25, 79-83.	0.3	2
13	Phylogeny and biogeography of arcticâ€elpine butterflies of the genus Oeneis (Nymphalidae: Satyrinae). Entomological Science, 2021, 24, 183-195.	0.3	3
14	Vestibular Preservation After Cochlear Implantation Using the Round Window Approach. Frontiers in Neurology, 2021, 12, 656592.	1.1	4
15	Identification of a Novel Copy Number Variation of EYA4 Causing Autosomal Dominant Non-syndromic Hearing Loss. Otology and Neurotology, 2021, 42, e866-e874.	0.7	4
16	A nationwide epidemiologic, clinical, genetic study of Usher syndrome in Japan. Acta Oto-Laryngologica, 2021, 141, 841-846.	0.3	1
17	Vestibular nerve deficiency and vestibular function in children with unilateral hearing loss caused by cochlear nerve deficiency. Acta Oto-Laryngologica, 2021, 141, 835-840.	0.3	3
18	Vibrant soundbridge implantation prior to auricular reconstruction with unilateral microtiaâ€atresia. Clinical Case Reports (discontinued), 2021, 9, e04408.	0.2	1

SHIN-ІСНІ USAMI

#	Article	IF	CITATIONS
19	Milestones toward cochlear gene therapy for patients with hereditary hearing loss. Laryngoscope Investigative Otolaryngology, 2021, 6, 958-967.	0.6	8
20	Prevalence and Clinical Characteristics of Hearing Loss Caused by MYH14 Variants. Genes, 2021, 12, 1623.	1.0	5
21	Development and validation of an iPad-based Japanese language monosyllable speech perception test (iCl2004 monosyllable). Acta Oto-Laryngologica, 2021, 141, 267-272.	0.3	2
22	Frequency and natural course of congenital cytomegalovirus-associated hearing loss in children. Acta Oto-Laryngologica, 2021, 141, 1038-1043.	0.3	1
23	Treatment algorithm for idiopathic sudden sensorineural hearing loss based on epidemiologic surveys of a large Japanese cohort. Acta Oto-Laryngologica, 2020, 140, 32-39.	0.3	11
24	Prevalence of the mitochondrial 1555 A>G and 1494 C>T mutations in a community-dwelling population in Japan. Human Genome Variation, 2020, 7, 27.	0.4	12
25	The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease's cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion, 2020, 55, 134-144.	1.6	20
26	Congenital Membranous Stapes Footplate Producing Episodic Pressure-Induced Perilymphatic Fistula Symptoms. Frontiers in Neurology, 2020, 11, 585747.	1.1	11
27	Detailed MR imaging assessment of endolymphatic hydrops in patients with SLC26A4 mutations Auris Nasus Larynx, 2020, 47, 958-964.	0.5	1
28	A comparative analysis of genetic hearing loss phenotypes in European/American and Japanese populations. Human Genetics, 2020, 139, 1315-1323.	1.8	12
29	A phase I/IIa double blind single institute trial of low dose sirolimus for Pendred syndrome/DFNB4. Medicine (United States), 2020, 99, e19763.	0.4	11
30	Electric-acoustic stimulation with longer electrodes for potential deterioration in low-frequency hearing. Acta Oto-Laryngologica, 2020, 140, 624-630.	0.3	20
31	Clinical Characteristics and In Vitro Analysis of MYO6 Variants Causing Late-onset Progressive Hearing Loss. Genes, 2020, 11, 273.	1.0	12
32	The availability of an adhesive bone conduction hearing device: a preliminary report of a single-center experience. Acta Oto-Laryngologica, 2020, 140, 319-326.	0.3	6
33	Genetic testing has the potential to impact hearing preservation following cochlear implantation. Acta Oto-Laryngologica, 2020, 140, 438-444.	0.3	21
34	Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nature Communications, 2020, 11, 1343.	5.8	22
35	Haplotype Analysis of GJB2 Mutations: Founder Effect or Mutational Hot Spot?. Genes, 2020, 11, 250.	1.0	19
36	Cochlear Implantation From the Perspective of Genetic Background. Anatomical Record, 2020, 303, 563-593.	0.8	27

#	Article	IF	CITATIONS
37	Prevalence and clinical features of hearing loss caused by EYA4 variants. Scientific Reports, 2020, 10, 3662.	1.6	20
38	Novel ACTG1 mutations in patients identified by massively parallel DNA sequencing cause progressive hearing loss. Scientific Reports, 2020, 10, 7056.	1.6	15
39	Genetic Counseling for Patients with <i>GJB2</i> -Associated Hearing Loss. Practica Otologica, 2020, 113, 223-233.	0.0	Ο
40	Comprehensive analysis of syndromic hearing loss patients in Japan. Scientific Reports, 2019, 9, 11976.	1.6	19
41	A plea for systematic literature analysis and conclusive study design, comment on: "Systematic review of magnetic resonance imaging for diagnosis of Meniere diseaseâ€: Journal of Vestibular Research: Equilibrium and Orientation, 2019, , 1-7.	0.8	2
42	Mid-Frequency Hearing Loss Is Characteristic Clinical Feature of OTOA-Associated Hearing Loss. Genes, 2019, 10, 715.	1.0	15
43	Mutational Spectrum and Clinical Features of Patients with LOXHD1 Variants Identified in an 8074 Hearing Loss Patient Cohort. Genes, 2019, 10, 735.	1.0	15
44	The Prevalence and Clinical Characteristics of TECTA-Associated Autosomal Dominant Hearing Loss. Genes, 2019, 10, 744.	1.0	17
45	Detailed Clinical Features of Deafness Caused by a Claudin-14 Variant. International Journal of Molecular Sciences, 2019, 20, 4579.	1.8	4
46	OTOF mutation analysis with massively parallel DNA sequencing in 2,265 Japanese sensorineural hearing loss patients. PLoS ONE, 2019, 14, e0215932.	1.1	31
47	Frequency and clinical features of hearing loss caused by STRC deletions. Scientific Reports, 2019, 9, 4408.	1.6	56
48	A Case of Bilateral Profound Hearing loss Caused by Idiopathic Labyrinthitis that Showed a Clinical Course Similar to that of Delayed Endolymphatic Hydrops. Equilibrium Research, 2019, 78, 61-68.	0.2	0
49	<i>USH2A</i> mutations identified by massively parallel sequencing in 3 children with sensorineural hearing loss. Audiology Japan, 2019, 62, 218-223.	0.1	Ο
50	A rational approach to identifying newborns with hearing loss caused by congenital cytomegalovirus infection by dried blood spot screening. Acta Oto-Laryngologica, 2018, 138, 708-712.	0.3	16
51	Simple and efficient germline copy number variant visualization method for the Ion AmpliSeqâ,,¢ custom panel. Molecular Genetics & Genomic Medicine, 2018, 6, 678-686.	0.6	25
52	Hearing preservation cochlear implantation in children: The HEARRING Group consensus and practice guide. Cochlear Implants International, 2018, 19, 1-13.	0.5	43
53	Cochlear volume as a predictive factor for residual-hearing preservation after conventional cochlear implantation. Acta Oto-Laryngologica, 2018, 138, 345-350.	0.3	17
54	Feasibility of hearing preservation for residual hearing with longer cochlear implant electrodes. Acta Oto-Laryngologica, 2018, 138, 1080-1085.	0.3	18

#	Article	IF	CITATIONS
55	Bilateral delayed endolymphatic hydrops evaluated by bilateral intratympanic injection of gadodiamide with 3T-MRI. PLoS ONE, 2018, 13, e0206891.	1.1	12
56	Diagnostic pitfalls for <i><scp>CJB</scp>2</i> â€related hearing loss: A novel deletion detected by Arrayâ€ <scp>CCH</scp> analysis in a Japanese patient with congenital profound hearing loss. Clinical Case Reports (discontinued), 2018, 6, 2111-2116.	0.2	6
57	Sensorineural hearing loss and mild cardiac phenotype caused by an EYA4 mutation. Human Genome Variation, 2018, 5, 23.	0.4	15
58	Differences and similarities of cochlear and vestibular endorgans in patients with hereditary hearing loss. Equilibrium Research, 2018, 77, 180-187.	0.2	0
59	The diagnostic performance of a novel ELISA for human CTP (Cochlin-tomoprotein) to detect perilymph leakage. PLoS ONE, 2018, 13, e0191498.	1.1	22
60	WFS1 mutation screening in a large series of Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis. PLoS ONE, 2018, 13, e0193359.	1.1	33
61	A Case of <i>TMPRSS3</i> Mutation with Mid- to Low-frequency Hearing Loss. Practica Otologica, Supplement, 2018, 152, 12-13.	0.0	1
62	Pitfalls of genetic testing using the next-generation sequencer. Audiology Japan, 2018, 61, 129-135.	0.1	0
63	Congenital hearing loss. Nature Reviews Disease Primers, 2017, 3, 16094.	18.1	328
64	Laser-capture micro dissection combined with next-generation sequencing analysis of cell type-specific deafness gene expression in the mouse cochlea. Hearing Research, 2017, 348, 87-97.	0.9	19
65	The clinical features and prognosis of mumps-associated hearing loss: a retrospective, multi-institutional investigation in Japan. Acta Oto-Laryngologica, 2017, 137, S44-S47.	0.3	25
66	A nationwide multicenter study of the Cochlin tomo-protein detection test: clinical characteristics of perilymphatic fistula cases. Acta Oto-Laryngologica, 2017, 137, S53-S59.	0.3	14
67	Differences between acoustic trauma and other types of acute noise-induced hearing loss in terms of treatment and hearing prognosis. Acta Oto-Laryngologica, 2017, 137, S48-S52.	0.3	14
68	Acute sensorineural hearing loss. Acta Oto-Laryngologica, 2017, 137, S1-S1.	0.3	1
69	Outcomes of cochlear implantation for the patients with specific genetic etiologies: a systematic literature review. Acta Oto-Laryngologica, 2017, 137, 730-742.	0.3	35
70	Nationwide epidemiological survey of idiopathic sudden sensorineural hearing loss in Japan. Acta Oto-Laryngologica, 2017, 137, S8-S16.	0.3	52
71	Epidemiological survey of acute low-tone sensorineural hearing loss. Acta Oto-Laryngologica, 2017, 137, S34-S37.	0.3	22
72	Idiopathic sudden sensorineural hearing loss and acute low-tone sensorineural hearing loss: a comparison of the results of a nationwide epidemiological survey in Japan. Acta Oto-Laryngologica, 2017, 137, S38-S43.	0.3	30

#	Article	IF	CITATIONS
73	Etiology of single-sided deafness and asymmetrical hearing loss. Acta Oto-Laryngologica, 2017, 137, S2-S7.	0.3	70
74	Prognostic impact of gene polymorphisms in patients with idiopathic sudden sensorineural hearing loss. Acta Oto-Laryngologica, 2017, 137, S24-S29.	0.3	13
75	The effect of initial treatment on hearing prognosis in idiopathic sudden sensorineural hearing loss: a nationwide survey in Japan. Acta Oto-Laryngologica, 2017, 137, S30-S33.	0.3	25
76	Relationships among drinking and smoking habits, history of diseases, body mass index and idiopathic sudden sensorineural hearing loss in Japanese patients. Acta Oto-Laryngologica, 2017, 137, S17-S23.	0.3	11
77	The Clinical Next-Generation Sequencing Database: A Tool for the Unified Management of Clinical Information and Genetic Variants to Accelerate Variant Pathogenicity Classification. Human Mutation, 2017, 38, 252-259.	1.1	12
78	Compound heterozygous dominant and recessive GJB2 mutations cause deafness with palmoplantar keratoderma. Acta Oto-Laryngologica Case Reports, 2017, 2, 137-140.	0.1	0
79	Long-term results of hearing preservation cochlear implant surgery in patients with residual low frequency hearing. Acta Oto-Laryngologica, 2017, 137, 516-521.	0.3	40
80	Discrimination of Japanese monosyllables in patients with high-frequency hearing loss. Journal of Otolaryngology of Japan, 2017, 120, 68-69.	0.1	0
81	POU4F3 mutation screening in Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis identified novel variants associated with autosomal dominant hearing loss. PLoS ONE, 2017, 12, e0177636.	1.1	31
82	A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation With Special Emphasis on Genetic Epidemiology. Otology and Neurotology, 2016, 37, e126-e134.	0.7	61
83	Constitutive activation of <scp>DIA</scp> 1 (<scp>DIAPH</scp> 1) via Câ€ŧerminal truncation causes human sensorineural hearing loss. EMBO Molecular Medicine, 2016, 8, 1310-1324.	3.3	51
84	The effects of cochlear implantation in Japanese single-sided deafness patients: five case reports. Acta Oto-Laryngologica, 2016, 136, 460-464.	0.3	26
85	Detection and Confirmation of Deafness-Causing Copy Number Variations in the <i>STRC</i> Gene by Massively Parallel Sequencing and Comparative Genomic Hybridization. Annals of Otology, Rhinology and Laryngology, 2016, 125, 918-923.	0.6	28
86	Discrimination of Japanese monosyllables in patients with high-frequency hearing loss. Auris Nasus Larynx, 2016, 43, 269-280.	0.5	6
87	Correlation Between White Matter Lesions and Intelligence Quotient in Patients With Congenital Cytomegalovirus Infection. Pediatric Neurology, 2016, 55, 52-57.	1.0	18
88	An effective screening strategy for deafness in combination with a next-generation sequencing platform: a consecutive analysis. Journal of Human Genetics, 2016, 61, 253-261.	1.1	29
89	Frequency of Usher syndrome type 1 in deaf children by massively parallel DNA sequencing. Journal of Human Genetics, 2016, 61, 419-422.	1.1	19
90	<i>SOD1</i> gene polymorphisms in sudden sensorineural hearing loss. Acta Oto-Laryngologica, 2016, 136, 465-469.	0.3	13

#	Article	IF	CITATIONS
91	Social Health Insurance-Based Simultaneous Screening for 154 Mutations in 19 Deafness Genes Efficiently Identified Causative Mutations in Japanese Hearing Loss Patients. PLoS ONE, 2016, 11, e0162230.	1.1	22
92	Comprehensive Genetic Analysis of Japanese Autosomal Dominant Sensorineural Hearing Loss Patients. PLoS ONE, 2016, 11, e0166781.	1.1	17
93	A Case of Myoepithelioma of the Larynx Removed by Laryngofissure. Practica Otologica, Supplement, 2016, 145, 78-79.	0.0	0
94	A Study on Sensorineural Hearing Loss Induced by Chemoradiotherapy for Head and Neck Cancers Using Cisplatin. Practica Otologica, Supplement, 2016, 147, 8-9.	0.0	0
95	The Evaluation of the Intratympanic Steroid Therapy for Idiopathic Sudden Sensorineural Hearing Loss. Practica Otologica, Supplement, 2015, 144, 6-7.	0.0	Ο
96	Novel <i>ABHD12</i> Mutations in PHARC Patients. Annals of Otology, Rhinology and Laryngology, 2015, 124, 77S-83S.	0.6	21
97	Identification of a Novel CLRN1 Gene Mutation in Usher Syndrome Type 3. Annals of Otology, Rhinology and Laryngology, 2015, 124, 94S-99S.	0.6	4
98	Hearing Loss Caused by a <i>P2RX2</i> Mutation Identified in a MELAS Family With a Coexisting Mitochondrial 3243AG Mutation. Annals of Otology, Rhinology and Laryngology, 2015, 124, 177S-183S.	0.6	17
99	Ethnic-Specific Spectrum of <i>GJB2</i> and <i>SLC26A4</i> Mutations. Annals of Otology, Rhinology and Laryngology, 2015, 124, 61S-76S.	0.6	91
100	Mutational Spectrum and Clinical Features of Patients With <i>ACTG1</i> Mutations Identified by Massively Parallel DNA Sequencing. Annals of Otology, Rhinology and Laryngology, 2015, 124, 84S-93S.	0.6	23
101	Silicone impression material foreign body in the middle ear: Two case reports and literature review. Auris Nasus Larynx, 2015, 42, 419-423.	0.5	8
102	Non-ocular Stickler Syndrome With a Novel Mutation in <i>COL11A2</i> Diagnosed by Massively Parallel Sequencing in Japanese Hearing Loss Patients. Annals of Otology, Rhinology and Laryngology, 2015, 124, 111S-117S.	0.6	8
103	Carrier frequency of the GJB2 mutations that cause hereditary hearing loss in the Japanese population. Journal of Human Genetics, 2015, 60, 613-617.	1.1	19
104	Molecular Diagnosis of Deafness—A Preface. Annals of Otology, Rhinology and Laryngology, 2015, 124, 5S-5S.	0.6	1
105	Detailed Hearing and Vestibular Profiles in the Patients with COCH Mutations. Annals of Otology, Rhinology and Laryngology, 2015, 124, 100S-110S.	0.6	25
106	Massively Parallel DNA Sequencing Successfully Identified Seven Families With Deafness-Associated <i>MYO6</i> Mutations. Annals of Otology, Rhinology and Laryngology, 2015, 124, 148S-157S.	0.6	27
107	Germinal Mosaicism in a Family With BO Syndrome. Annals of Otology, Rhinology and Laryngology, 2015, 124, 118S-122S.	0.6	7
108	The advantages of sound localization and speech perception of bilateral electric acoustic stimulation. Acta Oto-Laryngologica, 2015, 135, 147-153.	0.3	9

#	Article	IF	CITATIONS
109	The Patients Associated With <i>TMPRSS3</i> Mutations Are Good Candidates for Electric Acoustic Stimulation. Annals of Otology, Rhinology and Laryngology, 2015, 124, 193S-204S.	0.6	32
110	De Novo Mutation in X-Linked Hearing Loss–Associated POU3F4 in a Sporadic Case of Congenital Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 169S-176S.	0.6	19
111	Novel <i>PTPRQ</i> Mutations Identified in Three Congenital Hearing Loss Patients With Various Types of Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 184S-192S.	0.6	19
112	Mutations in <i>LOXHD1</i> Gene Cause Various Types and Severities of Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 135S-141S.	0.6	24
113	Novel Mutations in <i>GRXCR1</i> at DFNB25 Lead to Progressive Hearing Loss and Dizziness. Annals of Otology, Rhinology and Laryngology, 2015, 124, 129S-134S.	0.6	8
114	USH2 Caused by <i>GPR98</i> Mutation Diagnosed by Massively Parallel Sequencing in Advance of the Occurrence of Visual Symptoms. Annals of Otology, Rhinology and Laryngology, 2015, 124, 123S-128S.	0.6	9
115	Gene Expression Profiles of the Cochlea and Vestibular Endorgans. Annals of Otology, Rhinology and Laryngology, 2015, 124, 6S-48S.	0.6	44
116	Mutations in the <i>MYO15A</i> Gene Are a Significant Cause of Nonsyndromic Hearing Loss. Annals of Otology, Rhinology and Laryngology, 2015, 124, 158S-168S.	0.6	42
117	Deafness Gene Variations in a 1120 Nonsyndromic Hearing Loss Cohort. Annals of Otology, Rhinology and Laryngology, 2015, 124, 49S-60S.	0.6	68
118	Novel Mutations in <i>LRTOMT</i> Associated With Moderate Progressive Hearing Loss in Autosomal Recessive Inheritance. Annals of Otology, Rhinology and Laryngology, 2015, 124, 142S-147S.	0.6	9
119	Clinical Application of a Custom AmpliSeq Library and Ion Torrent PGM Sequencing to Comprehensive Mutation Screening for Deafness Genes. Genetic Testing and Molecular Biomarkers, 2015, 19, 209-217.	0.3	37
120	Deafness Gene Expression Patterns in the Mouse Cochlea Found by Microarray Analysis. PLoS ONE, 2014, 9, e92547.	1.1	48
121	Gene Expression Pattern after Insertion of Dexamethasone-Eluting Electrode into the Guinea Pig Cochlea. PLoS ONE, 2014, 9, e110238.	1.1	21
122	Frequency of mitochondrial mutations in non-syndromic hearing loss as well as possibly responsible variants found by whole mitochondrial genome screening. Journal of Human Genetics, 2014, 59, 100-106.	1.1	21
123	Mutation spectrum and genotype–phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study. Journal of Human Genetics, 2014, 59, 262-268.	1.1	113
124	Hearing preservation and clinical outcome of 32 consecutive electric acoustic stimulation (EAS) surgeries. Acta Oto-Laryngologica, 2014, 134, 717-727.	0.3	56
125	Evaluation of cortical processing of language by use of positron emission tomography in hearing loss children with congenital cytomegalovirus infection. International Journal of Pediatric Otorhinolaryngology, 2014, 78, 285-289.	0.4	2
126	Utilizing Ethnic-Specific Differences in Minor Allele Frequency to Recategorize Reported Pathogenic Deafness Variants. American Journal of Human Genetics, 2014, 95, 445-453.	2.6	137

#	Article	IF	CITATIONS
127	A Case of Endoscopic Marsupialization for a Congenital Laryngeal Saccular Cyst. Practica Otologica, Supplement, 2014, 138, 86-87.	0.0	0
128	High-Frequency Involved Hearing Loss Caused by Novel Mitochondrial DNA Mutation in 16S Ribosomal RNA Gene. Otology and Neurotology, 2014, 35, 1087-1090.	0.7	2
129	Massively Parallel DNA Sequencing Facilitates Diagnosis of Patients with Usher Syndrome Type 1. PLoS ONE, 2014, 9, e90688.	1.1	36
130	OTOF mutation screening in Japanese severe to profound recessive hearing loss patients. BMC Medical Genetics, 2013, 14, 95.	2.1	34
131	An Usher syndrome type 1 patient diagnosed before the appearance of visual symptoms by MYO7A mutation analysis. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 298-302.	0.4	11
132	Long term speech perception after cochlear implant in pediatric patients with GJB2 mutations. Auris Nasus Larynx, 2013, 40, 435-439.	0.5	18
133	Effects of EAS cochlear implantation surgery on vestibular function. Acta Oto-Laryngologica, 2013, 133, 1128-1132.	0.3	25
134	Hearing Handicap in Adults With Unilateral Deafness and Bilateral Hearing Loss. Otology and Neurotology, 2013, 34, 644-649.	0.7	36
135	Comprehensive Genetic Screening of KCNQ4 in a Large Autosomal Dominant Nonsyndromic Hearing Loss Cohort: Genotype-Phenotype Correlations and a Founder Mutation. PLoS ONE, 2013, 8, e63231.	1.1	47
136	Targeted Exon Sequencing Successfully Discovers Rare Causative Genes and Clarifies the Molecular Epidemiology of Japanese Deafness Patients. PLoS ONE, 2013, 8, e71381.	1.1	88
137	Massively Parallel DNA Sequencing Successfully Identifies New Causative Mutations in Deafness Genes in Patients with Cochlear Implantation and EAS. PLoS ONE, 2013, 8, e75793.	1.1	83
138	Patients withCDH23mutations and the 1555A>G mitochondrial mutation are good candidates for electric acoustic stimulation (EAS). Acta Oto-Laryngologica, 2012, 132, 377-384.	0.3	39
139	Comparison of the diagnostic value of 3 T MRI after intratympanic injection of GBCA, electrocochleography, and the glycerol test in patients with Meniere's disease. Acta Oto-Laryngologica, 2012, 132, 141-145.	0.3	62
140	Experience with the Vibrant Soundbridge RW-Coupler for round window Vibroplasty with tympanosclerosis. Acta Oto-Laryngologica, 2012, 132, 676-682.	0.3	20
141	TECTA mutations in Japanese with mid-frequency hearing loss affected by zona pellucida domain protein secretion. Journal of Human Genetics, 2012, 57, 587-592.	1.1	29
142	Language development in Japanese children who receive cochlear implant and/or hearing aid. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 433-438.	0.4	23
143	Inner hair cells of mice express the glutamine transporter SAT1. Hearing Research, 2012, 292, 59-63.	0.9	7
144	Prevalence and Clinical Features of Hearing Loss Patients with CDH23 Mutations: A Large Cohort Study. PLoS ONE, 2012, 7, e40366.	1.1	61

#	Article	IF	CITATIONS
145	Prevalence of low birth weight infants among Japanese patients with hearing loss and the characteristics of their Japanese language development Audiology Japan, 2012, 55, 146-151.	0.1	0
146	Simultaneous Screening of Multiple Mutations by Invader Assay Improves Molecular Diagnosis of Hereditary Hearing Loss: A Multicenter Study. PLoS ONE, 2012, 7, e31276.	1.1	65
147	Clinical profile of hearing loss in children with congenital cytomegalovirus (CMV) infection: CMV DNA diagnosis using preserved umbilical cord. Acta Oto-Laryngologica, 2011, 131, 976-982.	0.3	41
148	Different cortical metabolic activation by visual stimuli possibly due to different time courses of hearing loss in patients withGJB2andSLC26A4mutations. Acta Oto-Laryngologica, 2011, 131, 1232-1236.	0.3	3
149	IgG4-related chronic rhinosinusitis: A new clinical entity of nasal disease. Acta Oto-Laryngologica, 2011, 131, 518-526.	0.3	91
150	Achievement of hearing preservation in the presence of an electrode covering the residual hearing region. Acta Oto-Laryngologica, 2011, 131, 405-412.	0.3	70
151	Molecular diagnosis of deafness. Audiology Japan, 2011, 54, 44-55.	0.1	5
152	Results of electric acoustic stimulation for partial deafness in japan: three case reports. Audiology Japan, 2011, 54, 678-685.	0.1	2
153	Genetic background of candidates for EAS (Electric-Acoustic Stimulation). Audiological Medicine, 2010, 8, 28-32.	0.4	18
154	Semi-quantitative evaluation of endolymphatic hydrops by bilateral intratympanic gadolinium-based contrast agent (GBCA) administration with MRI for Meniere's disease. Acta Oto-Laryngologica, 2010, 130, 10-16.	0.3	38
155	Endolymphatic hydrops and therapeutic effects are visualized in â€ ⁻ atypical' Meniere's disease. Acta Oto-Laryngologica, 2009, 129, 1326-1329.	0.3	32
156	Preâ€Baha Operation Three Dimensional Computed Tomography With Markers for Determining Optimal Implant Site. Laryngoscope, 2008, 118, 1824-1826.	1.1	9
157	The responsible genes in Japanese deafness patients and clinical application using Invader assay. Acta Oto-Laryngologica, 2008, 128, 446-454.	0.3	44
158	Clinical characteristics and genotype–phenotype correlation of hearing loss patients with <i>SLC26A4</i> mutations. Acta Oto-Laryngologica, 2007, 127, 1292-1297.	0.3	54
159	Application of Deafness Diagnostic Screening Panel Based on Deafness Mutation/Gene Database Using Invader Assay. Genetic Testing and Molecular Biomarkers, 2007, 11, 333-340.	1.7	41
160	Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese. Journal of Human Genetics, 2007, 52, 510-515.	1.1	56
161	A New Autosomal Recessive Form of Stickler Syndrome Is Caused by a Mutation in the COL9A1 Gene. American Journal of Human Genetics, 2006, 79, 449-457.	2.6	145
162	Clinical features of patients with GJB2 (connexin 26) mutations: severity of hearing loss is correlated with genotypes and protein expression patterns. Journal of Human Genetics, 2005, 50, 76-83.	1.1	79

#	Article	IF	CITATIONS
163	Mutation analysis of COL9A3, a gene highly expressed in the cochlea, in hearing loss patients. Auris Nasus Larynx, 2005, 32, 113-117.	0.5	21
164	GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Human Genetics, 2003, 112, 329-333.	1.8	144
165	Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. European Journal of Human Genetics, 2003, 11, 744-748.	1.4	85
166	Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct: a unique spectrum of mutations in Japanese. European Journal of Human Genetics, 2003, 11, 916-922.	1.4	220
167	Effect of single-drug treatment on idiopathic sudden sensorineural hearing loss. Auris Nasus Larynx, 2003, 30, 123-127.	0.5	53
168	Identification of CRYM as a Candidate Responsible for Nonsyndromic Deafness, through cDNA Microarray Analysis of Human Cochlear and Vestibular Tissues**Nucleotide sequence data reported herein are available in the DDBJ/EMBL/GenBank databases; for details, see the Electronic-Database Information section of this article American Journal of Human Genetics, 2003, 72, 73-82.	2.6	122
169	A mutational hot spot in theKCNQ4 gene responsible for autosomal dominant hearing impairment. Human Mutation, 2002, 20, 15-19.	1.1	48
170	Connexin 26 distribution in gap junctions between melanocytes in the human vestibular dark cell area. The Anatomical Record, 2001, 262, 137-146.	2.3	25
171	Expression of the P2X ₂ Receptor Subunit of the ATP-Gated Ion Channel in the Cochlea: Implications for Sound Transduction and Auditory Neurotransmission. Journal of Neuroscience, 1999, 19, 8377-8388.	1.7	164
172	Sensorineural hearing loss caused by mitochondrial dna mutations. Journal of Communication Disorders, 1998, 31, 423-435.	0.8	47
173	Three Familial Cases of Hearing Loss Associated with Enlargement of the Vestibular Aqueduct. Annals of Otology, Rhinology and Laryngology, 1997, 106, 1063-1069.	0.6	41
174	Genetic and Clinical Features of Sensorineural Hearing Loss Associated With the 1555 Mitochondrial Mutation. Laryngoscope, 1997, 107, 483-490.	1.1	137
175	Systematic Literature Review of Hearing Preservation Rates in Cochlear Implantation Associated With Medium- and Longer-Length Flexible Lateral Wall Electrode Arrays. Frontiers in Surgery, 0, 9, .	0.6	10