
Aranzazu Heras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UV/Vis absorption spectroelectrochemistry of folic acid. Journal of Solid State Electrochemistry, 2022, 26, 29-37.	1.2	12
2	Forensic Identification of Fentanyl and its Analogs by Electrochemical-Surface Enhanced Raman Spectroscopy (EC-SERS) for the Screening of Seized Drugs of Abuse. Frontiers in Analytical Science, 2022, 2, .	1.1	8
3	Simultaneous Raman and reflection UV/Vis absorption spectroelectrochemistry. Nano Research, 2022, 15, 5340-5346.	5.8	6
4	Rapid Determination of the â€~Legal Highs' 4-MMC and 4-MEC by Spectroelectrochemistry: Simultaneous Cyclic Voltammetry and In Situ Surface-Enhanced Raman Spectroscopy. Sensors, 2022, 22, 295.	2.1	5
5	Multiamperometric-SERS detection of melamine on gold screen-printed electrodes. Journal of Electroanalytical Chemistry, 2022, 918, 116478.	1.9	3
6	Enhancement factors in electrochemical surface oxidation enhanced Raman scattering. Electrochimica Acta, 2021, 380, 138223.	2.6	9
7	Double fingerprint characterization of uracil and 5-fluorouracil. Electrochimica Acta, 2021, 388, 138615.	2.6	10
8	Electrochemical generation of surface enhanced Raman scattering substrates for the determination of folic acid. Journal of Electroanalytical Chemistry, 2021, 896, 115288.	1.9	7
9	UV/Vis spectroelectrochemistry of o-vanillin: Study of the antioxidant properties. Journal of Electroanalytical Chemistry, 2020, 859, 113844.	1.9	10
10	Electrochemical SERS and SOERS in a single experiment: A new methodology for quantitative analysis. Electrochimica Acta, 2020, 334, 135561.	2.6	25
11	Spectroelectrochemical Determination of Isoprenaline in a Pharmaceutical Sample. Sensors, 2020, 20, 5179.	2.1	5
12	Determination of nicotinamide in a multivitamin complex by electrochemical-surface enhanced Raman spectroscopy. Journal of Electroanalytical Chemistry, 2020, 879, 114743.	1.9	13
13	Chemical selectivity in electrochemical surface oxidation enhanced Raman scattering. Electrochimica Acta, 2020, 353, 136560.	2.6	12
14	Direct determination of monosaccharides in honey by coupling a sensitive new Schiff base Ni complex electrochemical sensor and chemometric tools. Sensors and Actuators B: Chemical, 2020, 312, 127848.	4.0	15
15	Dopamine-functionalized graphene oxide as a high-performance material for biosensing. 2D Materials, 2020, 7, 024007.	2.0	7
16	Derivative UV/Vis spectroelectrochemistry in a thin-layer regime: deconvolution and simultaneous quantification of ascorbic acid, dopamine and uric acid. Analytical and Bioanalytical Chemistry, 2020, 412, 6329-6339.	1.9	18
17	Determination of uric acid in synthetic urine by using electrochemical surface oxidation enhanced Raman scattering. Analytica Chimica Acta, 2019, 1085, 61-67.	2.6	33
18	Spectroelectrochemistry of Quantum Dots. Israel Journal of Chemistry, 2019, 59, 679-694.	1.0	9

ARANZAZU HERAS

#	Article	IF	CITATIONS
19	A Flexible Platform of Electrochemically Functionalized Carbon Nanotubes for NADH Sensors. Sensors, 2019, 19, 518.	2.1	7
20	Spectroelectrochemical Sensing: Current Trends and Challenges. Electroanalysis, 2019, 31, 1254-1278.	1.5	52
21	Effect of chloride and pH on the electrochemical surface oxidation enhanced Raman scattering. Applied Surface Science, 2019, 473, 366-372.	3.1	18
22	Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals. Talanta, 2019, 195, 815-821.	2.9	19
23	Simultaneous study of different regions of an electrode surface with a novel spectroelectrochemistry platform. Electrochemistry Communications, 2018, 90, 73-77.	2.3	7
24	Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Analytica Chimica Acta, 2018, 1012, 42-48.	2.6	45
25	Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes. Electrochimica Acta, 2018, 264, 183-190.	2.6	51
26	Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis. Talanta, 2018, 178, 736-742.	2.9	6
27	Electrodeposition of silver nanoparticles in the presence of different complexing agents by timeâ€resolved Raman spectroelectrochemistry. Journal of Raman Spectroscopy, 2018, 49, 482-492.	1.2	9
28	Simplifying the assessment of parameters of electron-transfer reactions by using easy-to-use thin-layer spectroelectrochemistry devices. Electrochemistry Communications, 2018, 86, 12-16.	2.3	13
29	Spectroelectrochemical monitoring of contaminants during the electrochemical filtration process using free-standing carbon nanotube filters. Electrochimica Acta, 2018, 280, 17-24.	2.6	4
30	Electrochemical surface oxidation enhanced Raman scattering. Electrochimica Acta, 2018, 282, 377-383.	2.6	36
31	In-situ Evidence of the Redox-State Dependence of Photoluminescence in Graphene Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 531-537.	2.1	19
32	Direct Determination of Ascorbic Acid in a Grapefruit: Paving the Way for In Vivo Spectroelectrochemistry. Analytical Chemistry, 2017, 89, 1815-1822.	3.2	25
33	Silver nanoparticles/free-standing carbon nanotube Janus membranes Electrochimica Acta, 2017, 243, 349-356.	2.6	5
34	Bidimensional Spectroelectrochemistry: application of a new device in the study of a o-vanillin-copper(II) complex. Electrochimica Acta, 2017, 245, 79-87.	2.6	15
35	Bipolar Spectroelectrochemistry. Analytical Chemistry, 2017, 89, 3879-3883.	3.2	10
36	Highly Stable and Efficient Light-Emitting Electrochemical Cells Based on Cationic Iridium Complexes Bearing Arylazole Ancillary Ligands. Inorganic Chemistry, 2017, 56, 10298-10310.	1.9	65

Aranzazu Heras

#	Article	IF	CITATIONS
37	Janus Electrochemistry: Asymmetric Functionalization in One Step. ACS Applied Materials & Interfaces, 2017, 9, 35404-35410.	4.0	7
38	Optically transparent electrodes for spectroelectrochemistry fabricated with graphene nanoplatelets and single-walled carbon nanotubes. RSC Advances, 2016, 6, 31431-31439.	1.7	12
39	Spectroelectrochemistry at free-standing carbon nanotubes electrodes. Electrochimica Acta, 2016, 217, 262-268.	2.6	10
40	Simultaneous UV–Visible Absorption and Raman Spectroelectrochemistry. Analytical Chemistry, 2016, 88, 8210-8217.	3.2	33
41	Development of Disposable Carbon Nanofibers Electrodes Supported on Filters. Electroanalysis, 2016, 28, 890-897.	1.5	4
42	Aqueous UV–VIS spectroelectrochemical study of the voltammetric reduction of graphene oxide on screen-printed carbon electrodes. Electrochemistry Communications, 2016, 64, 65-68.	2.3	31
43	Development of a Novel Bidimensional Spectroelectrochemistry Cell Using Transfer Single-Walled Carbon Nanotubes Films as Optically Transparent Electrodes. Analytical Chemistry, 2015, 87, 6233-6239.	3.2	33
44	Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry. Journal of Physical Chemistry C, 2015, 119, 8191-8198.	1.5	34
45	Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved Raman spectroelectrochemistry. Electrochemistry Communications, 2015, 54, 14-17.	2.3	21
46	Spectroelectrochemical synthesis of gold nanoparticles using cyclic voltammetry in the presence of a protective agent. RSC Advances, 2014, 4, 45168-45173.	1.7	5
47	Dynamic Raman Spectroelectrochemistry of Single Walled Carbon Nanotubes modified electrodes using a Langmuir-Schaefer method. Electrochimica Acta, 2014, 129, 171-176.	2.6	23
48	Time-Resolved Study of the Surface-Enhanced Raman Scattering Effect of Silver Nanoparticles Generated in Voltammetry Experiments Journal of Physical Chemistry C, 2014, 118, 23426-23433.	1.5	18
49	Spectroelectrochemical study of the electrosynthesis of Pt		

Aranzazu Heras

#	Article	IF	CITATIONS
55	Multipulse strategies for the electrosynthesis of gold nanoparticles studied by UV/Vis spectroelectrochemistry. Electrochemistry Communications, 2012, 18, 8-11.	2.3	16
56	One-pot synthesis of gold/poly(3,4-ethylendioxythiophene) nanocomposite. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	12
57	A UV–Visible/Raman spectroelectrochemical study of the stability of poly(3,4-ethylendioxythiophene) films. Polymer Degradation and Stability, 2011, 96, 2112-2119.	2.7	20
58	Low resolution Raman spectroelectrochemistry of single walled carbon nanotube electrodes. Electrochimica Acta, 2011, 56, 1294-1299.	2.6	12
59	Layer-by-layer electrosynthesis of Pt–Polyaniline nanocomposites for the catalytic oxidation of methanol. Electrochemistry Communications, 2009, 11, 122-125.	2.3	42
60	Electrochemical purification of carbon nanotube electrodes. Electrochemistry Communications, 2009, 11, 1535-1538.	2.3	29
61	Flexible optically transparent single-walled carbon nanotube electrodes for UV–Vis absorption spectroelectrochemistry. Electrochemistry Communications, 2009, 11, 442-445.	2.3	27
62	A spectroelectrochemical approach to the electrodeposition of bismuth film electrodes and their use in stripping analysis. Analytica Chimica Acta, 2008, 608, 140-146.	2.6	16
63	Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles. Electrochimica Acta, 2008, 53, 3916-3923.	2.6	49
64	Electrochemical, spectroscopic and electrogravimetric detection of oligomers occluded in electrochemically synthesized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2008, 53, 4219-4227.	2.6	15
65	Potential Regulation of the Spectroelectrochemical Response of Monolayer-Protected Gold Cluster Films by Electrolyte Composition. Journal of Physical Chemistry C, 2007, 111, 4277-4284.	1.5	9
66	Quantized spectroelectrochemical behaviour of monolayer-protected gold cluster films assessed by reflectance spectroelectrochemical quartz crystal microbalance. Electrochemistry Communications, 2007, 9, 255-261.	2.3	10
67	Electropolymerization of aniline on polyaniline-modified electrodes under hydrodynamic conditions. Electrochimica Acta, 2007, 52, 4778-4783.	2.6	12
68	Synthesis, spectral characterization and cytotoxicity of Ru–bipyridyl complexes containing hexakis(pyrazol-1-yl)benzene (hpzb) as a co-ligand. Polyhedron, 2007, 26, 4373-4382.	1.0	7
69	UV/Vis Spectroelectrochemical Evidence of Rectification of Quantized Charging in Monolayer-Protected Gold Cluster Films. Small, 2006, 2, 56-58.	5.2	10
70	Study of polyaniline films degradation by thin-layer bidimensional spectroelectrochemistry. Electrochimica Acta, 2006, 52, 234-239.	2.6	37
71	Electropolymerization and characterization of polyaniline films using a spectroelectrochemical flow cell. Analytica Chimica Acta, 2006, 573-574, 20-25.	2.6	19
72	Nernstian performance of the optical response of monolayer-protected gold cluster films. Electrochemistry Communications, 2006, 8, 863-868.	2.3	12

#	Article	IF	CITATIONS
73	Study of electrochemical stability of conducting polymers by bidimensional spectroelectrochemistry: p- and n-doping of poly(4,4′-bis(butylthio)-2,2′-bithiophene) films. Polymer Degradation and Stability, 2006, 91, 3117-3123.	2.7	6
74	A new reflection–transmission bidimensional spectroelectrochemistry cell: Electrically controlled release of chemicals from a conducting polymer. Journal of Electroanalytical Chemistry, 2006, 596, 95-100.	1.9	12
75	A poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) composite electrode coating in the electrooxidation of phenol. Electrochimica Acta, 2005, 50, 1685-1691.	2.6	51
76	Electropolymerisation of 3,4-ethylenedioxythiophene in aqueous solutions. Electrochemistry Communications, 2004, 6, 1192-1198.	2.3	88
77	Bidimensional spectroelectrochemical study on electrogeneration of soluble Prussian Blue from hexacyanoferrate(II) solutions. Electrochimica Acta, 2004, 49, 1027-1033.	2.6	29
78	Electropolymerization under potentiodynamic and potentiostatic conditions. Electrochimica Acta, 2004, 50, 59-67.	2.6	4
79	Electropolymerization under potentiodynamic and potentiostatic conditionsSpectroelectrochemical study on electrosynthesis of poly[4,4′-bis(2-methylbutylthio)-2,2′-bithiophene]. Electrochimica Acta, 2004, 50, 59-67.	2.6	16
80	UV-Visible Spectroelectrochemical Detection of Side-Reactions in the Hexacyanoferrate(III)/(II) Electrode Process. Electroanalysis, 2003, 15, 702-708.	1.5	25
81	Digital simulation model for bidimensional spectroelectrochemistry. Journal of Electroanalytical Chemistry, 2003, 553, 87-95.	1.9	7
82	Bidimensional chronoabsorptometric study of electropolymerisation of 4,4′-bis(2-methylbutylthio)-2,2′-bithiophene. Electrochemistry Communications, 2002, 4, 451-456.	2.3	23
83	Bidimensional Spectroelectrochemistry. Analytical Chemistry, 2001, 73, 2883-2889.	3.2	39
84	Bidimensional Spectroelectrochemistry Applied to the Electrosynthesis and Characterization of Conducting Polymers: Study of Poly[4,4′-bis(butylthio)-2,2′-bithiophene]. Helvetica Chimica Acta, 2001, 84, 3628-3642.	1.0	26