Gong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821892/publications.pdf

Version: 2024-02-01

125 papers 10,100 citations

53 h-index 97 g-index

207 all docs

207 docs citations

times ranked

207

6080 citing authors

#	Article	IF	CITATIONS
1	Nitrene-Mediated P–N Coupling Under Iron Catalysis. CCS Chemistry, 2022, 4, 2258-2266.	4.6	17
2	Synthesis of <scp>2â€Deoxyâ€<i>C</i>â€Glycosides</scp> via <scp>Iridiumâ€Catalyzed</scp> sp ² and sp ³ C—H Glycosylation with Unfunctionalized Glycals ^{â€} . Chinese Journal of Chemistry, 2022, 40, 571-576.	2.6	21
3	Extendable stapling of unprotected peptides by crosslinking two amines with o-phthalaldehyde. Nature Communications, 2022, $13,311.$	5.8	22
4	Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides., 2022, 1, 235-244.		49
5	Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine. Journal of the American Chemical Society, 2022, 144, 10080-10090.	6.6	9
6	Ruthenium-Catalyzed Pyridine-Directed Aryl C–H Glycosylation with Glycosyl Chlorides. Journal of Organic Chemistry, 2022, 87, 8811-8818.	1.7	6
7	<scp>Pdâ€Catalyzed <i>Ortho</i>à€Directed</scp> C—H Glycosylation of Arenes Using Nâ€linked Bidentate Auxiliaries. Chinese Journal of Chemistry, 2021, 39, 571-576.	2.6	24
8	Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angewandte Chemie - International Edition, 2021, 60, 6646-6652.	7.2	24
9	Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angewandte Chemie, 2021, 133, 6720-6726.	1.6	5
10	A rapid and sensitive method for chiroptical sensing of $\hat{l}\pm$ -amino acids <i>via</i> click-like labeling with <i>o</i> -phthalaldehyde and <i>p</i> -toluenethiol. Chemical Science, 2021, 12, 2504-2508.	3.7	12
11	Streamlined construction of peptide macrocycles <i>via</i> palladium-catalyzed intramolecular <i>S</i> -arylation in solution and on DNA. Chemical Science, 2021, 12, 5804-5810.	3.7	41
12	Arene Câ€"H Iodination Using 2-Nitrophenyl Iodides as the Iodinating Reagents. Chinese Journal of Organic Chemistry, 2021, 41, 4103.	0.6	6
13	Nitrene-mediated intermolecular N–N coupling for efficient synthesis of hydrazides. Nature Chemistry, 2021, 13, 378-385.	6.6	65
14	Postassembly Modifications of Peptides via Metal-Catalyzed C–H Functionalization. CCS Chemistry, 2021, 3, 1797-1820.	4.6	61
15	\hat{l}^2 -Lactam Synthesis via Copper-Catalyzed Directed Aminoalkylation of Unactivated Alkenes with Cyclobutanone <i>O</i> -Benzoyloximes. Organic Letters, 2021, 23, 3620-3625.	2.4	16
16	Photoredox-Mediated Mono- and Difluorination of Remote Unactivated Methylene C(sp ³)â€"H Bonds of <i>N</i> Alkyl Sulfonamides. Organic Letters, 2021, 23, 3631-3635.	2.4	10
17	Total Synthesis of C-α-Mannosyl Tryptophan via Palladium-Catalyzed C–H Glycosylation. CCS Chemistry, 2021, 3, 1729-1736.	4.6	46
18	Palladium-Catalyzed $\langle i \rangle O \langle i \rangle$ - and $\langle i \rangle N \langle i \rangle$ -Glycosylation with Glycosyl Chlorides. CCS Chemistry, 2021, 3, 1821-1829.	4.6	20

#	Article	IF	CITATIONS
19	Stereoselective Synthesis of <i>C</i> àê√inyl Glycosides via Palladiumâ€Catalyzed Câ^H Glycosylation of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 19620-19625.	7.2	48
20	Stereoselective Synthesis of <i>C</i> àâ€Vinyl Glycosides via Palladiumâ€Catalyzed Câ^'H Glycosylation of Alkenes. Angewandte Chemie, 2021, 133, 19772-19777.	1.6	8
21	Tunable System for Electrochemical Reduction of Ketones and Phthalimides. Chinese Journal of Chemistry, 2021, 39, 3297-3302.	2.6	19
22	Construction of Peptide Macrocycles via Palladium-Catalyzed Multiple S-Arylation: An Effective Strategy to Expand the Structural Diversity of Cross-Linkers. Organic Letters, 2021, 23, 8001-8006.	2.4	11
23	Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C–H Alkylations. Organic Letters, 2021, 23, 716-721.	2.4	10
24	Enantioselective Alkylamination of Unactivated Alkenes under Copper Catalysis. Journal of the American Chemical Society, 2021, 143, 1195-1202.	6.6	46
25	Asymmetric Synthesis of β-Lactam via Palladium-Catalyzed Enantioselective Intramolecular C(sp ³)–H Amidation. ACS Catalysis, 2020, 10, 114-120.	5 . 5	83
26	Palladium-Catalyzed Amide-Directed Hydrocarbofunctionalization of 3-Alkenamides with Alkynes. ACS Catalysis, 2020, 10, 933-940.	5 . 5	52
27	Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular C(sp ³)â€"H Arylation of <i>N</i> Methyl Alanine at C-Termini. Organic Letters, 2020, 22, 6209-6213.	2.4	24
28	Synthesis of non-classical heteroaryl C-glycosides via Minisci-type alkylation of N-heteroarenes with 4-glycosyl-dihydropyridines. Science China Chemistry, 2020, 63, 1613-1618.	4.2	33
29	Construction of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Picolinamide-Directed Intramolecular C(sp ²)–H Arylation. Organic Letters, 2020, 22, 6879-6883.	2.4	35
30	Copper-catalyzed <i>ortho</i> -C(sp ²)â€"H amination of benzamides and picolinamides with alkylamines using oxygen as a green oxidant. Organic and Biomolecular Chemistry, 2020, 18, 4802-4814.	1.5	10
31	Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones. Nature Communications, 2020, 11, 1015.	5 . 8	45
32	Palladium-catalysed Câ^'H glycosylation for synthesis of C-aryl glycosides. Nature Catalysis, 2019, 2, 793-800.	16.1	97
33	Minisci C–H alkylation of N-heteroarenes with aliphatic alcohols <i>via</i> l²-scission of alkoxy radical intermediates. Organic Chemistry Frontiers, 2019, 6, 3205-3209.	2.3	36
34	Three-component vicinal-diarylation of alkenes <i>via</i> direct transmetalation of arylboronic acids. Chemical Science, 2019, 10, 7952-7957.	3.7	63
35	Histidine-Specific Peptide Modification via Visible-Light-Promoted C–H Alkylation. Journal of the American Chemical Society, 2019, 141, 18230-18237.	6.6	121
36	Photoredox-mediated remote C(sp ³)â€"H heteroarylation of free alcohols. Chemical Science, 2019, 10, 688-693.	3.7	111

#	Article	lF	CITATIONS
37	Selective Removal of Aminoquinoline Auxiliary by IBX Oxidation. Journal of Organic Chemistry, 2019, 84, 12792-12799.	1.7	41
38	Palladium-Catalyzed Amide-Directed Enantioselective Carboboration of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. ACS Catalysis, 2019, 9, 6502-6509.	5.5	74
39	Copper(I)-Catalyzed Enantioselective Intramolecular Aminotrifluoromethylation of <i>O</i> -Homoallyl Benzimidates. Organic Letters, 2019, 21, 4657-4661.	2.4	38
40	Construction of Natural-Product-Like Cyclophane-Braced Peptide Macrocycles via sp ³ C–H Arylation. Journal of the American Chemical Society, 2019, 141, 9401-9407.	6.6	108
41	Synthesis of reversible PAD4 inhibitors via copper-catalyzed Câ^'H arylation of benzimidazole. Science China Chemistry, 2019, 62, 592-596.	4.2	4
42	Iridium-Catalyzed Enantioselective C(sp ³)â€"H Amidation Controlled by Attractive Noncovalent Interactions. Journal of the American Chemical Society, 2019, 141, 7194-7201.	6.6	156
43	Photoredox-Mediated Remote C(sp3)–H Heteroarylation of N-Alkyl Sulfonamides. Journal of Organic Chemistry, 2019, 84, 15777-15787.	1.7	22
44	Synthesis of 2,3â€Fused Indoline Aminals <i>via</i> 4 + 2 Cycloaddition of NHâ€free Benzazetidines with Indoles. Chinese Journal of Chemistry, 2019, 37, 119-125.	2.6	14
45	Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. Journal of the American Chemical Society, 2018, 140, 3542-3546.	6.6	137
46	Total synthesis of teixobactin and its stereoisomers. Organic Chemistry Frontiers, 2018, 5, 1431-1435.	2.3	16
47	Radical Câ€"H Arylation of Oxazoles with Aryl lodides: dppf as an Electron-Transfer Mediator for Cs ₂ CO ₃ . Organic Letters, 2018, 20, 1684-1687.	2.4	22
48	Photoredoxâ€Mediated Minisci Alkylation of Nâ€Heteroarenes using Carboxylic Acids and Hypervalent lodine. Asian Journal of Organic Chemistry, 2018, 7, 1307-1310.	1.3	49
49	Palladiumâ€Catalyzed <i>ortho</i> Câ°'H Arylation of Benzaldehydes Using <i>ortho</i> â€Sulfinyl Aniline as Transient Auxiliary. Chemistry - an Asian Journal, 2018, 13, 2423-2426.	1.7	20
50	A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 Câ ⁻ H arylation. Nature Chemistry, 2018, 10, 540-548.	6.6	180
51	Radical-mediated intramolecular β-C(sp ³)–H amidation of alkylimidates: facile synthesis of 1,2-amino alcohols. Chemical Communications, 2018, 54, 515-518.	2.2	46
52	Photoredox-Mediated Minisci-type Alkylation of $\langle i \rangle N \langle i \rangle$ -Heteroarenes with Alkanes with High Methylene Selectivity. ACS Catalysis, 2018, 8, 11847-11853.	5.5	97
53	Pd(0)-Catalyzed Bidentate Auxiliary Directed Enantioselective Benzylic C–H Arylation of 3-Arylpropanamides Using the BINOL Phosphoramidite Ligand. ACS Catalysis, 2018, 8, 11502-11512.	5.5	47
54	Epimerization of Tertiary Carbon Centers via Reversible Radical Cleavage of Unactivated C(sp ³)â€"H Bonds. Journal of the American Chemical Society, 2018, 140, 9678-9684.	6.6	49

#	Article	IF	CITATIONS
55	Palladium-Catalyzed β-C–H Arylation of Alkyl Carboxamides with Sterically Hindered Aryl Iodides Using <i>ortho</i> >Sulfinyl Aniline Auxiliaries. ACS Catalysis, 2017, 7, 1880-1885.	5.5	35
56	Halogen-Bond-Promoted Photoactivation of Perfluoroalkyl Iodides: A Photochemical Protocol for Perfluoroalkylation Reactions. Organic Letters, 2017, 19, 1442-1445.	2.4	224
57	Iridium-Catalyzed <i>ortho</i> -C(sp ²)â€"H Amidation of Benzaldehydes with Organic Azides. Journal of Organic Chemistry, 2017, 82, 4497-4503.	1.7	53
58	A unified photoredox-catalysis strategy for C(sp ³)â€"H hydroxylation and amidation using hypervalent iodine. Chemical Science, 2017, 8, 7180-7185.	3.7	97
59	Palladium-catalyzed picolinamide-directed iodination of remote ortho-Câ^'H bonds of arenes: Synthesis of tetrahydroquinolines. Beilstein Journal of Organic Chemistry, 2016, 12, 1243-1249.	1.3	10
60	Photoredox-mediated Minisci C–H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chemical Science, 2016, 7, 6407-6412.	3.7	272
61	An Enantioselective Bidentate Auxiliary Directed Palladiumâ€Catalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie, 2016, 128, 15613-15617.	1.6	46
62	Synthesis of a suite of click-compatible sugar analogs for probing carbohydrate metabolism. Carbohydrate Research, 2016, 433, 54-62.	1.1	17
63	Benzazetidine synthesis via palladium-catalysed intramolecular Câ^'H amination. Nature Chemistry, 2016, 8, 1131-1136.	6.6	100
64	Correction: Photoredox-mediated Minisci C–H alkylation of N-heteroarenes using boronic acids and hypervalent iodine. Chemical Science, 2016, 7, 6573-6573.	3.7	1
65	An Enantioselective Bidentate Auxiliary Directed Palladiumâ€Catalyzed Benzylic Câ^'H Arylation of Amines Using a BINOL Phosphate Ligand. Angewandte Chemie - International Edition, 2016, 55, 15387-15391.	7.2	142
66	Palladium-catalyzed β-C(sp ³)â€"H arylation of phthaloyl alanine with hindered aryl iodides: synthesis of complex β-aryl α-amino acids. Organic and Biomolecular Chemistry, 2016, 14, 5511-5515.	1.5	24
67	A visible-light-promoted radical reaction system for azidation and halogenation of tertiary aliphatic C–H bonds. Chemical Science, 2016, 7, 2679-2683.	3.7	159
68	Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp ³ Câ€"H Functionalization. Accounts of Chemical Research, 2016, 49, 635-645.	7.6	446
69	The click-compatible sugar 6-deoxy-alkynyl glucose metabolically incorporates into Arabidopsis root hair tips and arrests their growth. Phytochemistry, 2016, 123, 16-24.	1.4	15
70	Total Synthesis of Mannopeptimycins \hat{l}_{\pm} and \hat{l}_{-}^2 . Journal of the American Chemical Society, 2016, 138, 3926-3932.	6.6	53
71	Palladium-catalyzed arylation of β-methylene C(sp3)–H bonds at room temperature: desymmetrization of simple cycloalkyl carboxylic acids. Organic Chemistry Frontiers, 2016, 3, 561-564.	2.3	29
72	Synthesis of \hat{l}^2 -alkynyl \hat{l}_{\pm} -amino acids via palladium-catalyzed alkynylation of unactivated C(sp3)-H bonds. Science China Chemistry, 2015, 58, 1345-1348.	4.2	28

#	Article	IF	Citations
73	Syntheses of Nitrogen-Containing Heterocycles via Palladium-Catalyzed Intramolecular Dehydrogenative C–H Amination. Synlett, 2015, 26, 2505-2511.	1.0	32
74	ATF4 Gene Network Mediates Cellular Response to the Anticancer PAD Inhibitor YW3-56 in Triple-Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2015, 14, 877-888.	1.9	55
7 5	Palladium-catalyzed alkylation of unactivated C(sp ³)â€"H bonds with primary alkyl iodides at room temperature: facile synthesis of β-alkyl Ĩ±-amino acids. Organic Chemistry Frontiers, 2015, 2, 1318-1321.	2.3	35
76	Pd-Catalyzed Monoselective <i>ortho</i> -Câ€"H Alkylation of <i>N</i> -Quinolyl Benzamides: Evidence for Stereoretentive Coupling of Secondary Alkyl Iodides. Journal of the American Chemical Society, 2015, 137, 531-539.	6.6	152
77	A Versatile Click-Compatible Monolignol Probe to Study Lignin Deposition in Plant Cell Walls. PLoS ONE, 2015, 10, e0121334.	1.1	19
78	Palladium-Catalyzed Stereoretentive Olefination of Unactivated C(sp ³)â€"H Bonds with Vinyl Iodides at Room Temperature: Synthesis of β-Vinyl α-Amino Acids. Organic Letters, 2014, 16, 6260-6263.	2.4	108
79	Total Synthesis of Hibispeptin A via Pd-Catalyzed C(sp ³)–H Arylation with Sterically Hindered Aryl Iodides. Organic Letters, 2014, 16, 6488-6491.	2.4	80
80	Palladiumâ€Catalyzed Picolinamideâ€Directed Acetoxylation of Unactivated γâ€C(<i>sp</i> ³)H Bonds of Alkylamines. Advanced Synthesis and Catalysis, 2014, 356, 1544-1548.	2.1	80
81	Palladium-catalyzed trifluoroacetate-promoted mono-arylation of the β-methyl group of alanine at room temperature: synthesis of β-arylated α-amino acids through sequential C〓H functionalization. Chemical Science, 2014, 5, 3952.	3.7	124
82	Copper-Catalyzed Carboxamide-Directed <i>Ortho</i> Amination of Anilines with Alkylamines at Room Temperature. Organic Letters, 2014, 16, 1764-1767.	2.4	187
83	Palladium-catalyzed picolinamide-directed halogenation of ortho C–H bonds of benzylamine substrates. Tetrahedron, 2014, 70, 4197-4203.	1.0	39
84	Stereoselective Synthesis of β-Alkylated α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp ³)â€"H Bonds with Primary Alkyl Halides. Journal of the American Chemical Society, 2013, 135, 12135-12141.	6.6	315
85	Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladiumâ€Catalyzed Intramolecular Amination of Unactivated γ C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 11124-11128.	7.2	275
86	Experimental and computational studies of anion recognition by pyridine-functionalised calixarenes. Supramolecular Chemistry, 2013, 25, 481-489.	1.5	6
87	Palladium-Catalyzed Picolinamide-Directed Alkylation of Unactivated C(sp ³)–H Bonds with Alkyl lodides. Journal of the American Chemical Society, 2013, 135, 2124-2127.	6.6	357
88	Synthesis of novel bivalent mimetic ligands for mannose-6-phosphate receptors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2328-2331.	1.0	11
89	lodination of Remote <i>Ortho</i> -C–H Bonds of Arenes via Directed S _E Ar: A Streamlined Synthesis of Tetrahydroquinolines. Organic Letters, 2013, 15, 3440-3443.	2.4	48
90	Synthesis of phenanthridines via palladium-catalyzed picolinamide-directed sequential C–H functionalization. Beilstein Journal of Organic Chemistry, 2013, 9, 891-899.	1.3	32

#	Article	IF	Citations
91	Anticancer Peptidylarginine Deiminase (PAD) Inhibitors Regulate the Autophagy Flux and the Mammalian Target of Rapamycin Complex 1 Activity. Journal of Biological Chemistry, 2012, 287, 25941-25953.	1.6	133
92	Palladium-Catalyzed Alkenylation and Alkynylation of <i>ortho</i> -C(sp ²)–H Bonds of Benzylamine Picolinamides. Organic Letters, 2012, 14, 2948-2951.	2.4	97
93	Highly Efficient Syntheses of Azetidines, Pyrrolidines, and Indolines via Palladium Catalyzed Intramolecular Amination of C(sp ³)–H and C(sp ²)–H Bonds at γ and δPositions. Journal of the American Chemical Society, 2012, 134, 3-6.	6.6	515
94	Efficient Alkyl Ether Synthesis via Palladium-Catalyzed, Picolinamide-Directed Alkoxylation of Unactivated C(sp ⁾³)â€"H and C(sp ⁾²)â€"H Bonds at Remote Positions. Journal of the American Chemical Society, 2012, 134, 7313-7316.	6.6	321
95	Improved Protocol for Indoline Synthesis via Palladium-Catalyzed Intramolecular C(sp ²)â€"H Amination. Organic Letters, 2012, 14, 2944-2947.	2.4	148
96	Chemical Synthesis of N-Linked Glycans Carrying Both Mannose-6-phosphate and GlcNAc-Mannose-6-phosphate Motifs. Journal of Organic Chemistry, 2011, 76, 8682-8689.	1.7	14
97	Palladium-Catalyzed Alkylation of <i>ortho</i> -C(sp ²)â€"H Bonds of Benzylamide Substrates with Alkyl Halides. Organic Letters, 2011, 13, 4850-4853.	2.4	178
98	Development of highly effective three-component cytoprotective adjuncts for cisplatin cancer treatment: synthesis and in vivo evaluation in \$180-bearing mice. Metallomics, 2011, 3, 1212.	1.0	2
99	A class of novel N-isoquinoline-3-carbonyl-l-amino acid benzylesters: Synthesis, anti-tumor evaluation and 3D QSAR analysis. European Journal of Medicinal Chemistry, 2011, 46, 1672-1681.	2.6	9
100	A Practical Strategy for the Structural Diversification of Aliphatic Scaffolds through the Palladiumâ€Catalyzed Picolinamideâ€Directed Remote Functionalization of Unactivated C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2011, 50, 5192-5196.	7.2	365
101	Chemical Synthesis of a Bisphosphorylated Mannoseâ€6â€Phosphate Nâ€Glycan and its Facile Monoconjugation with Human Carbonic Anhydrase II for in vivo Fluorescence Imaging. ChemBioChem, 2011, 12, 685-690.	1.3	19
102	Total Synthesis of Celogentinâ€C by Stereoselective CH Activation. Angewandte Chemie - International Edition, 2010, 49, 958-961.	7.2	295
103	Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene, 2010, 29, 3153-3162.	2.6	117
104	Facile Benzo-Ring Construction via Palladium-Catalyzed Functionalization of Unactivated sp ³ Câ^3H Bonds under Mild Reaction Conditions. Organic Letters, 2010, 12, 3414-3417.	2.4	143
105	Toward Fully Synthetic Homogeneous \hat{l}^2 -Human Follicle-Stimulating Hormone (\hat{l}^2 -hFSH) with a Biantennary N-Linked Dodecasaccharide. Synthesis of \hat{l}^2 -hFSH with Chitobiose Units at the Natural Linkage Sites. Journal of the American Chemical Society, 2009, 131, 5792-5799.	6.6	94
106	Toward Homogeneous Erythropoietin: Fine Tuning of the C-Terminal Acyl Donor in the Chemical Synthesis of the Cys ²⁹ â^'Gly ⁷⁷ Glycopeptide Domain. Journal of the American Chemical Society, 2009, 131, 5432-5437.	6.6	54
107	Toward Homogeneous Erythropoietin: Chemical Synthesis of the Ala1â°Gly28 Glycopeptide Domain by "Alanine―Ligation. Journal of the American Chemical Society, 2009, 131, 5438-5443.	6.6	58
108	Development of Efficient Methods for Accomplishing Cysteineâ€Free Peptide and Glycopeptide Coupling. Angewandte Chemie - International Edition, 2007, 46, 7383-7387.	7.2	82

#	Article	IF	Citations
109	A Potentially Valuable Advance in the Synthesis of Carbohydrate-Based Anticancer Vaccines through Extended Cycloaddition Chemistry. Journal of Organic Chemistry, 2006, 71, 8244-8249.	1.7	93
110	Studies Related to the Relative Thermodynamic Stability of C-Terminal Peptidyl Esters of O-Hydroxy Thiophenol:Â Emergence of a Doable Strategy for Non-Cysteine Ligation Applicable to the Chemical Synthesis of Glycopeptides. Journal of the American Chemical Society, 2006, 128, 7460-7462.	6.6	72
111	A route to cyclic peptides and glycopeptides by native chemical ligation using in situ derived thioesters. Tetrahedron Letters, 2006, 47, 1969-1972.	0.7	28
112	Reiterative cysteine-based coupling leading to complex, homogeneous glycopeptides. Tetrahedron Letters, 2006, 47, 5219-5223.	0.7	26
113	Synthesis of the fucosylated biantennary N-glycan of erythropoietin. Tetrahedron Letters, 2006, 47, 5577-5579.	0.7	54
114	Mature homogeneous erythropoietin-level building blocks by chemical synthesis: the EPO 114–166 glycopeptide domain, presenting the O-linked glycophorin. Tetrahedron Letters, 2006, 47, 8013-8016.	0.7	36
115	Mature homogeneous erythropoietin building blocks by chemical synthesis: the EPO 22–37 glycopeptide domain presenting the full N-linked dodecasaccharide. Tetrahedron Letters, 2006, 47, 8009-8011.	0.7	29
116	Building Complex Glycopeptides: Development of a Cysteine-Free Native Chemical Ligation Protocol. Angewandte Chemie - International Edition, 2006, 45, 4116-4125.	7.2	158
117	Design of Optical Switches as Metabolic Indicators:Â New Fluorogenic Probes for Monoamine Oxidases (MAO A and B). Journal of the American Chemical Society, 2005, 127, 4544-4545.	6.6	101
118	Reactivity of Functional Groups on the Protein Surface:  Development of Epoxide Probes for Protein Labeling. Journal of the American Chemical Society, 2003, 125, 8130-8133.	6.6	121
119	Modular Synthesis of π-Acceptor Cyclophanes Derived from 1,4,5,8-Naphthalenetetracarboxylic Diimide and 1,5-Dinitronaphthalene. Journal of Organic Chemistry, 2001, 66, 3027-3034.	1.7	29
120	Chemical Analysis of Single Cells and Exocytosis. Critical Reviews in Neurobiology, 1997, 11, 59-90.	3.3	81
121	Electrochemical monitoring of bursting exocytotic events from the giant dopamine neuron ofPlanorbis corneus. Brain Research, 1996, 733, 119-124.	1.1	18
122	Multiple classes of catecholamine vesicles observed during exocytosis from the Planorbis cell body. Brain Research, 1995, 701, 167-174.	1.1	29
123	Observation and quantitation of exocytosis from the cell body of a fully developed neuron in Planorbis corneus. Journal of Neuroscience, 1995, 15, 7747-7755.	1.7	96
124	Solid Phase Synthesis of Thioetherâ€linked Peptide Macrocycles via Palladiumâ€Catalyzed Intramolecular Sâ€Arylation and Sâ€Alkenylation. Asian Journal of Organic Chemistry, 0, , .	1.3	0
125	Introduction to â€~Synthesis and chemical biology of macrocycles'. RSC Chemical Biology, 0, , .	2.0	0