
Owen Clarkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/482172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine property-tuning through Ca content control in a facile synthesis of glasses-based self-setting injectable hydrogel. Materials and Design, 2021, 211, 110166.	7.0	0
2	Comprehensive assessment of spatter material generated during selective laser melting of stainless steel. Materials Today Communications, 2020, 25, 101294.	1.9	24
3	The effect of tantalum incorporation on the physical and chemical properties of ternary silicon–calcium–phosphorous mesoporous bioactive glasses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2229-2237.	3.4	11
4	Novel injectable gallium-based self-setting glass-alginate hydrogel composite for cardiovascular tissue engineering. Carbohydrate Polymers, 2019, 217, 152-159.	10.2	25
5	The effect of calcination rate on the structure of mesoporous bioactive glasses. Journal of Sol-Gel Science and Technology, 2019, 89, 426-435.	2.4	3
6	Optimisation of a novel glass-alginate hydrogel for the treatment of intracranial aneurysms. Carbohydrate Polymers, 2017, 176, 227-235.	10.2	12
7	Surface modification of a novel glass to optimise strength and deliverability of an injectable alginate composite. Journal of Materials Science, 2017, 52, 13700-13710.	3.7	4
8	Silica-Based and Borate-Based, Titania-Containing Bioactive Coatings Characterization: Critical Strain Energy Release Rate, Residual Stresses, Hardness, and Thermal Expansion. Journal of Functional Biomaterials, 2016, 7, 32.	4.4	15
9	A bioactive metallurgical grade porous silicon–polytetrafluoroethylene sheet for guided bone regeneration applications. Bio-Medical Materials and Engineering, 2014, 24, 1563-1574.	0.6	2
10	Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 2881-2891.	3.6	14
11	Antibacterial Analysis of a Zinc-based Glass Polyalkenoate Cement. Journal of Biomaterials Applications, 2011, 26, 277-292.	2.4	14
12	Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty. Journal of Materials Science: Materials in Medicine, 2010, 21, 59-66.	3.6	23
13	Hydroxyapatite formation on metallurgical grade nanoporous silicon particles. Journal of Materials Science, 2010, 45, 6562-6568.	3.7	9
14	Strontium-based Glass Polyalkenoate Cements for Luting Applications in the Skeleton. Journal of Biomaterials Applications, 2010, 24, 483-502.	2.4	22
15	Comparison of an experimental bone cement with a commercial control, Hydrosetâ"¢. Journal of Materials Science: Materials in Medicine, 2009, 20, 1563-1570.	3.6	27
16	Comparison of failure mechanisms for cements used in skeletal luting applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 1585-1594.	3.6	10
17	The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements. Journal of Materials Science: Materials in Medicine, 2009, 20, 1991-1999.	3.6	20
18	Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties. Acta Biomaterialia, 2008, 4, 425-431.	8.3	58

OWEN CLARKIN

#	Article	IF	CITATIONS
19	The role of Sr2+ on the structure and reactivity of SrO–CaO–ZnO–SiO2 ionomer glasses. Journal of Materials Science: Materials in Medicine, 2008, 19, 953-957.	3.6	49
20	Comparison of an experimental bone cement with surgical Simplex® P, Spineplex® and Cortoss®. Journal of Materials Science: Materials in Medicine, 2008, 19, 1745-1752.	3.6	61
21	TEM analysis of apatite surface layers observed on zinc based glass polyalkenoate cements. Journal of Materials Science, 2008, 43, 1170-1173.	3.7	17
22	Phase transformations of calcium phosphates formed in wet field environments. Journal of Materials Science, 2007, 42, 8357-8362.	3.7	7