Toshiyuki Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821466/publications.pdf Version: 2024-02-01

Тоснічни Існи

#	Article	IF	CITATIONS
1	Involvement of the Câ€ŧerminal domain in cell surface localization and Gâ€protein coupling of mGluR6. Journal of Neurochemistry, 2021, 158, 837-848.	3.9	6
2	The Câ€ŧerminal domain is required for mGluR6 cellâ€surface localization. FASEB Journal, 2021, 35, .	0.5	0
3	P2X 2 receptors supply extracellular choline as a substrate for acetylcholine synthesis. FEBS Open Bio, 2021, 12, 250.	2.3	2
4	Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Reports, 2020, 33, 108464.	6.4	24
5	Two Types of Cl Transporters Contribute to the Regulation of Intracellular Cl Concentrations in ON- and OFF-type Bipolar Cells in the Mouse Retina. Neuroscience, 2020, 440, 267-276.	2.3	1
6	Auxiliary Proteins are the Predominant Determinants of Differential Efficacy of Clinical Candidates Acting as AMPA Receptor Positive Allosteric Modulators. Molecular Pharmacology, 2020, 97, 336-350.	2.3	13
7	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. PLoS Computational Biology, 2020, 16, e1007726.	3.2	4
8	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. , 2020, 16, e1007726.		0
9	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. , 2020, 16, e1007726.		Ο
10	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. , 2020, 16, e1007726.		0
11	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. , 2020, 16, e1007726.		Ο
12	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. , 2020, 16, e1007726.		0
13	Interspike intervals within retinal spike bursts combinatorially encode multiple stimulus features. , 2020, 16, e1007726.		0
14	Peripherally derived T regulatory and γδT cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. Journal of Experimental Medicine, 2018, 215, 1169-1186.	8.5	80
15	Variation in the Phenotype of Photosensitive Cells Produced from Human Fibroblast Cell Lines. Journal of Nippon Medical School, 2018, 85, 110-116.	0.9	2
16	Functional characterization of AMPA receptor positive allosteric modulators PF-04958242 and LY-451395. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-83.	0.0	0
17	Novel channel-mediated choline transport in cholinergic neurons of the mouse retina. Journal of Neurophysiology, 2017, 118, 1952-1961.	1.8	7
18	Physiological contribution of P2X receptors in postreceptoral signal processing in the mouse retina. Neuroscience Research, 2017, 115, 5-12.	1.9	1

Тознічикі Ізнії

#	Article	IF	CITATIONS
19	Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions. ENeuro, 2017, 4, ENEURO.0364-17.2017.	1.9	21
20	<i>In vitro</i> transdifferentiation of human peripheral blood mononuclear cells to photoreceptor-like cells. Biology Open, 2016, 5, 709-719.	1.2	18
21	Crizotinib-Induced Abnormal Signal Processing in the Retina. PLoS ONE, 2015, 10, e0135521.	2.5	17
22	ONâ€pathwayâ€dominant glycinergic regulation of cholinergic amacrine cells in the mouse retina. Journal of Physiology, 2014, 592, 4235-4245.	2.9	13
23	Patch Clamp Study for Regenerative Medicine of the Retina. Nihon Ika Daigaku Igakkai Zasshi, 2014, 10, 4-5.	0.0	Ο
24	Pathwayâ€dependent modulation by P2â€purinoceptors in the mouse retina. European Journal of Neuroscience, 2008, 28, 128-136.	2.6	26