Ren-Li Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821427/publications.pdf Version: 2024-02-01

RENLLI VIN

#	Article	IF	CITATIONS
1	Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chemical Engineering Journal, 2019, 357, 589-599.	6.6	363
2	Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: Direct oxidation and nonradical mechanisms. Chemical Engineering Journal, 2018, 334, 2539-2546.	6.6	284
3	Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms. Chemical Engineering Journal, 2018, 335, 145-153.	6.6	269
4	Hydroxyl radical dominated degradation of aquatic sulfamethoxazole by Fe0/bisulfite/O2: Kinetics, mechanisms, and pathways. Water Research, 2018, 138, 323-332.	5.3	236
5	Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and degradation pathways. Chemical Engineering Journal, 2019, 362, 561-569.	6.6	220
6	A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environmental Pollution, 2019, 253, 100-110.	3.7	178
7	Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresource Technology, 2016, 216, 653-660.	4.8	175
8	Upgrading liquor-making wastewater into medium chain fatty acid: Insights into co-electron donors, key microflora, and energy harvest. Water Research, 2018, 145, 650-659.	5.3	147
9	Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: Kinetics, mechanisms, and pathways. Ultrasonics Sonochemistry, 2015, 22, 182-187.	3.8	145
10	Adsorption of p-nitrophenols (PNP) on microalgal biochar: Analysis of high adsorption capacity and mechanism. Bioresource Technology, 2017, 244, 1456-1464.	4.8	144
11	Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Bioresource Technology, 2016, 221, 284-290.	4.8	125
12	In situ photoreduction of structural Fe(III) in a metal–organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater. Journal of Hazardous Materials, 2020, 388, 121996.	6.5	121
13	Near-infrared light to heat conversion in peroxydisulfate activation with MoS2: A new photo-activation process for water treatment. Water Research, 2021, 190, 116720.	5.3	109
14	Heteroatoms doped graphene for catalytic ozonation of sulfamethoxazole by metal-free catalysis: Performances and mechanisms. Chemical Engineering Journal, 2017, 317, 632-639.	6.6	107
15	New insight into the substituents affecting the peroxydisulfate nonradical oxidation of sulfonamides in water. Water Research, 2020, 171, 115374.	5.3	88
16	Complexes of Fe(III)-organic pollutants that directly activate Fenton-like processes under visible light. Applied Catalysis B: Environmental, 2021, 283, 119663.	10.8	87
17	Insight into the effects of hydroxyl groups on the rates and pathways of tetracycline antibiotics degradation in the carbon black activated peroxydisulfate oxidation process. Journal of Hazardous Materials, 2021, 412, 125256.	6.5	70
18	Magnetic porous biochar with high specific surface area derived from microwave-assisted hydrothermal and pyrolysis treatments of water hyacinth for Cr(â¥) and tetracycline adsorption from water. Bioresource Technology, 2021, 340, 125692.	4.8	60

Ren-Li Yin

#	Article	IF	CITATIONS
19	Surface dual redox cycles of Mn(III)/Mn(IV) and Cu(I)/Cu(II) for heterogeneous peroxymonosulfate activation to degrade diclofenac: Performance, mechanism and toxicity assessment. Journal of Hazardous Materials, 2021, 410, 124623.	6.5	59
20	Enhanced amoxicillin treatment using the electro-peroxone process: key factors and degradation mechanism. RSC Advances, 2015, 5, 52695-52702.	1.7	50
21	Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: Unintentional bromide ion doping and photocatalytic activity. Catalysis Communications, 2017, 88, 68-72.	1.6	49
22	Consolidated 3D Co3Mn-layered double hydroxide aerogel for photo-assisted peroxymonosulfate activation in metronidazole degradation. Chemical Engineering Journal, 2021, 423, 130172.	6.6	48
23	Enhanced volatile fatty acid production from excess sludge by combined free nitrous acid and rhamnolipid treatment. Bioresource Technology, 2017, 224, 727-732.	4.8	46
24	Femtosecond time-resolved diffuse reflectance study on facet engineered charge arrier dynamics in Ag3PO4 for antibiotics photodegradation. Applied Catalysis B: Environmental, 2021, 281, 119479.	10.8	42
25	Enhanced sulfamethoxazole ozonation by noble metal-free catalysis based on magnetic Fe ₃ O ₄ nanoparticles: catalytic performance and degradation mechanism. RSC Advances, 2016, 6, 19265-19270.	1.7	40
26	Insight into combining visible-light photocatalysis with transformation of dual metal ions for enhancing peroxymonosulfate activation over dibismuth copper oxide. Chemical Engineering Journal, 2020, 390, 124582.	6.6	40
27	Degradation of sulfadiazine in water by a UV/O ₃ process: performance and degradation pathway. RSC Advances, 2016, 6, 57138-57143.	1.7	39
28	Structure–dependent degradation of nitroimidazoles by cobalt–manganese layered double hydroxide catalyzed peroxymonosulfate process. Chemosphere, 2021, 266, 129006.	4.2	34
29	Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment. Bioresource Technology, 2017, 239, 518-522.	4.8	32
30	Mechanisms Underlying the Emergence of Post-acidosis Arrhythmia at the Tissue Level: A Theoretical Study. Frontiers in Physiology, 2017, 8, 195.	1.3	21
31	Molecular structure on the detoxification of fluorinated liquid crystal monomers with reactive oxidation species in the photocatalytic process. Environmental Science and Ecotechnology, 2022, 9, 100141.	6.7	19
32	Peroxydisulfate bridged photocatalysis of covalent triazine framework for carbamazepine degradation. Chemical Engineering Journal, 2022, 427, 131613.	6.6	18
33	Simultaneous nutrient removal and reduction in sludge from sewage waste using an alternating anaerobic–anoxic–microaerobic–aerobic system combining ozone/ultrasound technology. RSC Advances, 2014, 4, 52892-52897.	1.7	17
34	Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae. RSC Advances, 2016, 6, 20051-20057.	1.7	17
35	Reduction of 4-chloronitrobenzene in a bioelectrochemical reactor with biocathode at ambient temperature for a long-term operation. Journal of the Taiwan Institute of Chemical Engineers, 2015, 46, 119-124.	2.7	16
36	Ultrasonic-assisted ozone oxidation process for sulfamethoxazole removal: impact factors and degradation process. Desalination and Water Treatment, 0, , 1-8.	1.0	4