Noton Kumar Dutta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development. Journal of Virology, 2020, 94, .	3.4	329
2	Latent Tuberculosis Infection: Myths, Models, and Molecular Mechanisms. Microbiology and Molecular Biology Reviews, 2014, 78, 343-371.	6.6	199
3	Genetic Requirements for the Survival of Tubercle Bacilli in Primates. Journal of Infectious Diseases, 2010, 201, 1743-1752.	4.0	159
4	Development of a Novel Lead that Targets M.Âtuberculosis Polyketide Synthase 13. Cell, 2017, 170, 249-259.e25.	28.9	124
5	Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. Journal of Medical Primatology, 2011, 40, 233-243.	0.6	111
6	Transcriptional Reprogramming in Nonhuman Primate (Rhesus Macaque) Tuberculosis Granulomas. PLoS ONE, 2010, 5, e12266.	2.5	98
7	Inhibiting the stringent response blocks <i>Mycobacterium tuberculosis</i> entry into quiescence and reduces persistence. Science Advances, 2019, 5, eaav2104.	10.3	93
8	Potential management of resistant microbial infections with a novel non-antibiotic: the anti-inflammatory drug diclofenac sodium. International Journal of Antimicrobial Agents, 2007, 30, 242-249.	2.5	89
9	The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 881-891.	2.9	89
10	Statin adjunctive therapy shortens the duration of TB treatment in mice. Journal of Antimicrobial Chemotherapy, 2016, 71, 1570-1577.	3.0	87
11	Production of specific antibodies against SARS-coronavirus nucleocapsid protein without cross reactivity with human coronaviruses 229E and OC43. Journal of Veterinary Science, 2010, 11, 165.	1.3	85
12	A Mycobacterium tuberculosis Sigma Factor Network Responds to Cell-Envelope Damage by the Promising Anti-Mycobacterial Thioridazine. PLoS ONE, 2010, 5, e10069.	2.5	84
13	Activity of diclofenac used alone and in combination with streptomycin against Mycobacterium tuberculosis in mice. International Journal of Antimicrobial Agents, 2007, 30, 336-340.	2.5	71
14	Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infectious Diseases, 2015, 1, 203-214.	3.8	71
15	The Stress-Response Factor SigH Modulates the Interaction between Mycobacterium tuberculosis and Host Phagocytes. PLoS ONE, 2012, 7, e28958.	2.5	57
16	Studies on the antibacterial potentiality of isoflavones. International Journal of Antimicrobial Agents, 2004, 23, 99-102.	2.5	55
17	Adjunctive Host-Directed Therapy With Statins Improves Tuberculosis-Related Outcomes in Mice. Journal of Infectious Diseases, 2020, 221, 1079-1087.	4.0	51
18	Characterization of a Novel Necrotic Granuloma Model of Latent Tuberculosis Infection and Reactivation in Mice. American Journal of Pathology, 2014, 184, 2045-2055.	3.8	50

#	Article	IF	CITATIONS
19	Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2016, 60, 6460-6470.	3.2	41
20	Evaluation of Synergism between the Aminoglycoside Antibiotic Streptomycin and the Cardiovascular Agent Amlodipine. Biological and Pharmaceutical Bulletin, 2004, 27, 1116-1120.	1.4	40
21	Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiological Research, 2005, 160, 95-100.	5.3	40
22	Developmental toxicity and brain aromatase induction by high genistein concentrations in zebrafish embryos. Toxicology Mechanisms and Methods, 2009, 19, 251-256.	2.7	38
23	Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infectious Diseases, 2016, 2, 231-239.	3.8	37
24	Reduced Emergence of Isoniazid Resistance with Concurrent Use of Thioridazine against Acute Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 4048-4053.	3.2	35
25	Rifapentine Is Not More Active than Rifampin against Chronic Tuberculosis in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2012, 56, 3726-3731.	3.2	34
26	Metformin Adjunctive Therapy Does Not Improve the Sterilizing Activity of the First-Line Antitubercular Regimen in Mice. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	33
27	Remembering the Host in Tuberculosis Drug Development. Journal of Infectious Diseases, 2019, 219, 1518-1524.	4.0	33
28	Diclofenac in the management of E. coli urinary tract infections. In Vivo, 2006, 20, 613-9.	1.3	33
29	Potential role of the cardiovascular non-antibiotic (helper compound) amlodipine in the treatment of microbial infections: scope and hope for the future. International Journal of Antimicrobial Agents, 2010, 36, 295-302.	2.5	31
30	Antimycobacterial activity of the antiinflammatory agent diclofenac sodium, and its synergism with streptomycin. Brazilian Journal of Microbiology, 2004, 35, 316-323.	2.0	30
31	Potent Rifamycin-Sparing Regimen Cures Guinea Pig Tuberculosis as Rapidly as the Standard Regimen. Antimicrobial Agents and Chemotherapy, 2013, 57, 3910-3916.	3.2	29
32	In Vitro and In Vivo Synergism between Tetracycline and the Cardiovascular Agent Oxyfedrine HCl against Common Bacterial Strains. Biological and Pharmaceutical Bulletin, 2005, 28, 713-717.	1.4	28
33	Search for potential target site of nucleocapsid gene for the design of an epitope-based SARS DNA vaccine. Immunology Letters, 2008, 118, 65-71.	2.5	28
34	Mycobacterium tuberculosisMT2816 Encodes a Key Stressâ€Response Regulator. Journal of Infectious Diseases, 2010, 202, 943-953.	4.0	28
35	New Patentable Use of an Old Neuroleptic Compound Thioridazine to Combat Tuberculosis: A Gene Regulation Perspective. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 128-138.	0.8	27
36	Antimicrobial potentiality of a new non-antibiotic: the cardiovascular drug oxyfedrine hydrochloride. Microbiological Research, 2003, 158, 259-264.	5.3	26

NOTON KUMAR DUTTA

#	Article	IF	CITATIONS
37	The anti-inflammatory drug Diclofenac retains anti-listerial activity <i>in vivo</i> . Letters in Applied Microbiology, 2008, 47, 106-111.	2.2	25
38	The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis. Journal of Lipid Research, 2020, 61, 1617-1628.	4.2	24
39	Integration of metabolomics and transcriptomics reveals novel biomarkers in the blood for tuberculosis diagnosis in children. Scientific Reports, 2020, 10, 19527.	3.3	23
40	Benomyl induction of brain aromatase and toxic effects in the zebrafish embryo. Journal of Applied Toxicology, 2009, 29, 289-294.	2.8	22
41	Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs. MBio, 2014, 5, .	4.1	21
42	Studies on the antimicrobial potential of the cardiovascular drug lacidipine. In Vivo, 2007, 21, 847-50.	1.3	21
43	Detection of antibodies against SARS-Coronavirus using recombinant truncated nucleocapsid proteins by ELISA. Journal of Microbiology and Biotechnology, 2008, 18, 1717-21.	2.1	21
44	Humoral and lung immune responses to Mycobacterium tuberculosis infection in a primate model of protection. Trials in Vaccinology, 2014, 3, 47-51.	1.2	20
45	Sterilizing Activity of Thioridazine in Combination with the First-Line Regimen against Acute Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 5567-5569.	3.2	20
46	Thioridazine lacks bactericidal activity in an animal model of extracellular tuberculosis. Journal of Antimicrobial Chemotherapy, 2013, 68, 1327-1330.	3.0	18
47	In vitro efficacy of diclofenac against Listeria monocytogenes. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 315-319.	2.9	17
48	Antimicrobial potentiality of the thioxanthene flupenthixol through extensive in vitro and in vivo experiments. International Journal of Antimicrobial Agents, 2006, 27, 58-62.	2.5	16
49	In vitrosynergistic effect of gentamicin with the anti-inflammatory agent diclofenac againstListeria monocytogenes. Letters in Applied Microbiology, 2009, 48, 783-5.	2.2	15
50	PA-824 is as effective as isoniazid against latent tuberculosis infection in C3HeB/FeJ mice. International Journal of Antimicrobial Agents, 2014, 44, 564-566.	2.5	15
51	Aerosolized Gentamicin Reduces the Burden of Tuberculosis in a Murine Model. Antimicrobial Agents and Chemotherapy, 2012, 56, 883-886.	3.2	14
52	NaCl plus chitosan as a dietary salt to prevent the development of hypertension in spontaneously hypertensive rats. Journal of Veterinary Science, 2009, 10, 141.	1.3	13
53	Preliminary Pharmacokinetic Study of Repeated Doses of Rifampin and Rifapentine in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2013, 57, 1535-1537.	3.2	13
54	Isolation and identification of a flavone (quercetin) from Butea frondosa bark. Pharmaceutical Chemistry Journal, 2007, 41, 269-271.	0.8	12

NOTON KUMAR DUTTA

#	Article	IF	CITATIONS
55	Editorial: Alternative Therapeutics Against Antimicrobial-Resistant Pathogens. Frontiers in Microbiology, 2019, 10, 2173.	3.5	12
56	Evaluation of a synergistic combination between the non-antibiotic microbicides diclofenac and trifluoperazine. International Journal of Antimicrobial Agents, 2003, 21, 599-601.	2.5	11
57	A tuberculosis ontology for host systems biology. Tuberculosis, 2015, 95, 570-574.	1.9	11
58	Experimental analyses of synergistic combinations of antibiotics with a recently recognised antibacterial agent, lacidipine. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 239-243.	2.9	9
59	Tuberculosis chemotherapy: Present situation, possible solutions, and progress towards a TB-free world. Indian Journal of Medical Microbiology, 2012, 30, 261-263.	0.8	9
60	Thioridazine for treatment of tuberculosis: Promises and pitfalls. Tuberculosis, 2014, 94, 708-711.	1.9	9
61	In vitro and in vivo efficacies of amlodipine against Listeria monocytogenes. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 849-853.	2.9	8
62	Activity of the phenothiazine methdilazine alone or in combination with isoniazid or streptomycin against Mycobacterium tuberculosis in mice. Journal of Medical Microbiology, 2009, 58, 1667-1668.	1.8	8
63	Antibiotic Treatment Shapes the Antigenic Environment During Chronic TB Infection, Offering Novel Targets for Therapeutic Vaccination. Frontiers in Immunology, 2020, 11, 680.	4.8	7
64	Estrogen-responsive transient expression assay using a brain aromatase-based reporter gene in zebrafish (Danio rerio). Comparative Medicine, 2009, 59, 416-23.	1.0	7
65	In vitro and in vivo antimycobacterial activity of an antihypertensive agent methyl-L-DOPA. In Vivo, 2005, 19, 539-45.	1.3	7
66	Can the duration of tuberculosis treatment be shortened with higher dosages of rifampicin?. Frontiers in Microbiology, 2015, 6, 1117.	3.5	6
67	Are There Sex-Specific Differences in Response to Adjunctive Host-Directed Therapies for Tuberculosis?. Frontiers in Immunology, 2020, 11, 1465.	4.8	3
68	Accelerating Drug Development through Repurposed FDA-Approved Drugs for COVID-19: Speed Is Important, Not Haste. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3
69	Statins as Host-Directed Therapy for Tuberculosis. , 2021, , 109-119.		3
70	Mechanisms of Action and Resistance of the Antimycobacterial Agents. , 2017, , 359-383.		2
71	Reply to Hu et al: Could there be detrimental effects of statin adjunctive TB therapy on immune responses?. Journal of Infectious Diseases, 2020, 222, 336-337.	4.0	1
72	The Anti-Tubercular Activity of Simvastatin Is Mediated by Cholesterol-Dependent Regulation of Autophagy <i>via</i> the AMPK-mTORC1-TFEB Axis. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
73	Anti-Salmonella activity of a flavonone from Butea frondosa bark in mice. Oriental Pharmacy and Experimental Medicine, 2008, 8, 339-348.	1.2	1
74	Pronounced inhibitory effect of chlorcyclizine (CCZ) in experimental hepatocarcinoma. In Vivo, 2006, 20, 97-102.	1.3	1
75	Commentary: Rifabutin Resistance Associated with Double Mutations in rpoB Gene in Mycobacterium tuberculosis Isolates. Frontiers in Microbiology, 2017, 8, 2274.	3.5	0