Jennifer H Elisseeff

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4821028/jennifer-h-elisseeff-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 14,556 116 220 h-index g-index citations papers 6.56 16,292 9.1 244 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
220	An immunologically active, adipose-derived extracellular matrix biomaterial for soft tissue reconstruction: concept to clinical trial <i>Npj Regenerative Medicine</i> , 2022 , 7, 6	15.8	1
219	A framework for addressing senescent cell burden in the osteoarthritic knee 2022, 309-334		
218	Senescent cells in tissue engineering. Current Opinion in Biotechnology, 2022, 76, 102737	11.4	О
217	Biomaterials direct functional B cell response in a material-specific manner. <i>Science Advances</i> , 2021 , 7, eabj5830	14.3	3
216	Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing. <i>Science Advances</i> , 2021 , 7,	14.3	6
215	The Immune System and Its Contribution to Variability in Regenerative Medicine. <i>Tissue Engineering - Part B: Reviews</i> , 2021 , 27, 39-47	7.9	8
214	Computational reconstruction of the signalling networks surrounding implanted biomaterials from single-cell transcriptomics. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1228-1238	19	6
213	Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. <i>Bone Research</i> , 2021 , 9, 41	13.3	9
212	Translational considerations for adipose-derived biological scaffolds for soft tissue repair. <i>Current Opinion in Biomedical Engineering</i> , 2021 , 20, 100321	4.4	O
211	Glutamine Inhibition Reduces Iatrogenic Laryngotracheal Stenosis. <i>Laryngoscope</i> , 2021 , 131, E2125-E21	39 6	1
210	Immune and Genome Engineering as the Future of Transplantable Tissue <i>New England Journal of Medicine</i> , 2021 , 385, 2451-2462	59.2	7
209	Human fibroblast-macrophage tissue spheroids demonstrate ratio-dependent fibrotic activity for in vitro fibrogenesis model development. <i>Biomaterials Science</i> , 2020 , 8, 1951-1960	7.4	9
208	Multifunctional synthetic Bowman's membrane-stromal biomimetic for corneal reconstruction. Biomaterials, 2020, 241, 119880	15.6	3
207	The Canary in the Coal Mine: Biomaterial Implants to Monitor Cancer Recurrence. <i>Cancer Research</i> , 2020 , 80, 377-378	10.1	
206	Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. <i>Nature Communications</i> , 2020 , 11, 1996	17.4	73
205	Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	42
204	IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. <i>Journal of Clinical Investigation</i> , 2020 , 130, 5493-5507	15.9	37

(2018-2020)

203	Serum NT/CT SIRT1 ratio reflects early osteoarthritis and chondrosenescence. <i>Annals of the Rheumatic Diseases</i> , 2020 , 79, 1370-1380	2.4	13
202	Two-Year Follow-Up and Remodeling Kinetics of ChonDux Hydrogel for Full-Thickness Cartilage Defect Repair in the Knee. <i>Cartilage</i> , 2020 , 11, 447-457	3	17
201	Tissue-Derived Biological Particles Restore Cornea Properties in an Enzyme-Mediated Corneal Ectatic Model. <i>Bioengineering</i> , 2019 , 6,	5.3	1
200	A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	62
199	Engineering an immunomodulatory drug-eluting stent to treat laryngotracheal stenosis. <i>Biomaterials Science</i> , 2019 , 7, 1863-1874	7.4	12
198	Cartilage Tissue Engineering 2019 , 937-952		4
197	Analyzing the scaffold immune microenvironment using flow cytometry: practices, methods and considerations for immune analysis of biomaterials. <i>Biomaterials Science</i> , 2019 , 7, 4472-4481	7.4	6
196	Interleukin-36Eproducing macrophages drive IL-17-mediated fibrosis. <i>Science Immunology</i> , 2019 , 4,	28	64
195	Microarray Embedding/Sectioning for Parallel Analysis of 3D Cell Spheroids. <i>Scientific Reports</i> , 2019 , 9, 16287	4.9	5
194	Senescence cell-associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. <i>JCI Insight</i> , 2019 , 4,	9.9	53
193	Effects of collagen crosslinking on porcine and human tarsal plate. BMC Ophthalmology, 2019, 19, 255	2.3	5
192	Tissue-derived microparticles reduce inflammation and fibrosis in cornea wounds. <i>Acta Biomaterialia</i> , 2019 , 85, 192-202	10.8	10
191	Divergent immune responses to synthetic and biological scaffolds. <i>Biomaterials</i> , 2019 , 192, 405-415	15.6	109
190	Synthetic Nanofiber-Reinforced Amniotic Membrane via Interfacial Bonding. <i>ACS Applied Materials & Materials (ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS ACS Applied Materials (ACS Applied Materials ACS ACS APPLIED (ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS </i>	9.5	24
189	Entanglement-Based Thermoplastic Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. <i>ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Applied Materials & Empty Shape Memory Polymeric Particles with Photothermal Particles and Par</i>	9.5	39
188	Collagen vitrigels with low-fibril density enhance human embryonic stem cell-derived retinal pigment epithelial cell maturation. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, 821-829	4.4	2
187	Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 147-159	5.4	32
186	Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants. <i>Advanced Functional Materials</i> , 2018 , 28, 1804076	15.6	21

185	A hyaluronic acid binding peptide-polymer system for treating osteoarthritis. <i>Biomaterials</i> , 2018 , 183, 93-101	15.6	36
184	Senescent cells and osteoarthritis: a painful connection. <i>Journal of Clinical Investigation</i> , 2018 , 128, 127	29 <u>1</u> 5237	112
183	Nictitating membrane fixation improves stability of the contact lens on the animal corneal surface. <i>PLoS ONE</i> , 2018 , 13, e0194795	3.7	5
182	Cornea Implants: Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants (Adv. Funct. Mater. 41/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870297	15.6	
181	Biological scaffold-mediated delivery of myostatin inhibitor promotes a regenerative immune response in an animal model of Duchenne muscular dystrophy. <i>Journal of Biological Chemistry</i> , 2018 , 293, 15594-15605	5.4	7
180	Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells. <i>Tissue Engineering - Part A</i> , 2017 , 23, 253-262	3.9	12
179	Biomanufacturing Seamless Tubular and Hollow Collagen Scaffolds with Unique Design Features and Biomechanical Properties. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601136	10.1	12
178	Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. <i>Nature Medicine</i> , 2017 , 23, 775-781	50.5	642
177	Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. <i>Seminars in Immunology</i> , 2017 , 29, 14-23	10.7	49
176	Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease. <i>Acta Biomaterialia</i> , 2017 , 55, 163-171	10.8	18
175	Key players in the immune response to biomaterial scaffolds for regenerative medicine. <i>Advanced Drug Delivery Reviews</i> , 2017 , 114, 184-192	18.5	178
174	An In Vitro Model for the Ocular Surface and Tear Film System. <i>Scientific Reports</i> , 2017 , 7, 6163	4.9	13
173	The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications. <i>Tissue Engineering - Part A</i> , 2017 , 23, 1044-1053	3.9	48
172	Intra-articular Injection of Urinary Bladder Matrix Reduces Osteoarthritis Development. <i>AAPS Journal</i> , 2017 , 19, 141-149	3.7	13
171	Metabolic variations in normal and fibrotic human laryngotracheal-derived fibroblasts: A Warburg-like effect. <i>Laryngoscope</i> , 2017 , 127, E107-E113	3.6	23
170	Chondroitin Sulfate-Based Biocompatible Crosslinker Restores Corneal Mechanics and Collagen Alignment 2017 , 58, 3887-3895		11
169	Hypoxia-Inducible Factor-Dependent Expression of Angiopoietin-Like 4 by Conjunctival Epithelial Cells Promotes the Angiogenic Phenotype of Pterygia 2017 , 58, 4514-4523		6
168	Three-Dimensional Culture of Functional Adult Rabbit Lacrimal Gland Epithelial Cells on Decellularized Scaffold. <i>Tissue Engineering - Part A</i> , 2016 , 22, 65-74	3.9	15

(2015-2016)

167	Design, clinical translation and immunological response of biomaterials in regenerative medicine. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	136
166	Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. <i>Scientific Reports</i> , 2016 , 6, 26761	4.9	95
165	Influence of collagen source on fibrillar architecture and properties of vitrified collagen membranes. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 300-7	3.5	14
164	Orthopedic tissue regeneration: cells, scaffolds, and small molecules. <i>Drug Delivery and Translational Research</i> , 2016 , 6, 105-20	6.2	27
163	Time to Relax: Mechanical Stress Release Guides Stem Cell Responses. Cell Stem Cell, 2016, 18, 166-7	18	14
162	Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. <i>Biomaterials</i> , 2016 , 83, 93-101	15.6	17
161	Evaluation of the biocompatibility of regenerated cellulose hydrogels with high strength and transparency for ocular applications. <i>Journal of Biomaterials Applications</i> , 2016 , 30, 1049-59	2.9	17
160	Assessment of a Novel Corneal-Shaping Device With Simultaneous Corneal Collagen Cross-Linking Using a Porcine Eye Model. <i>Cornea</i> , 2016 , 35, 114-21	3.1	4
159	Mimicking biological functionality with polymers for biomedical applications. <i>Nature</i> , 2016 , 540, 386-39	94 50.4	278
158	Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration. <i>Tissue Engineering - Part A</i> , 2016 , 22, 689-97	3.9	15
157	Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. <i>Science</i> , 2016 , 352, 366-70	33.3	327
156	Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1806-1816	5.5	111
155	Biodynamic performance of hyaluronic acid versus synovial fluid of the knee in osteoarthritis. <i>Methods</i> , 2015 , 84, 90-8	4.6	17
154	Tissue matrix arrays for high-throughput screening and systems analysis of cell function. <i>Nature Methods</i> , 2015 , 12, 1197-204	21.6	115
153	Integrating Tissue Microenvironment with Scaffold Design to Promote Immune-Mediated Regeneration 2015 , 35-51		
152	Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. <i>Biomaterials</i> , 2015 , 73, 1-11	15.6	26
151	Use of a chondroitin sulfate bioadhesive to enhance integration of bioglass particles for repairing critical-size bone defects. <i>Journal of Biomedical Materials Research - Part A</i> , 2015 , 103, 235-42	5.4	19
150	Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency. <i>Acta Ophthalmologica</i> , 2015 , 93, e57-66	3.7	31

149	A hyaluronic acid-binding contact lens with enhanced water retention. <i>Contact Lens and Anterior Eye</i> , 2015 , 38, 79-84	4.1	37
148	Carnitine and acetylcarnitine modulate mesenchymal differentiation of adult stem cells. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2015 , 9, 1352-62	4.4	12
147	Physical and Biological Characterization of the Gamma-Irradiated Human Cornea. <i>Cornea</i> , 2015 , 34, 128	37 <u>391</u> 4	12
146	Protective Effects of Soluble Collagen during Ultraviolet-A Crosslinking on Enzyme-Mediated Corneal Ectatic Models. <i>PLoS ONE</i> , 2015 , 10, e0136999	3.7	8
145	Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. <i>Oncotarget</i> , 2015 , 6, 130-43	3.3	99
144	PEG hydrogel degradation and the role of the surrounding tissue environment. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2015 , 9, 315-8	4.4	73
143	Biomaterials and Tissue Engineering Strategies for Conjunctival Reconstruction and Dry Eye Treatment. <i>Middle East African Journal of Ophthalmology</i> , 2015 , 22, 428-34	0.9	13
142	Intra-articular delivery of glucosamine for treatment of experimental osteoarthritis created by a medial meniscectomy in a rat model. <i>Journal of Orthopaedic Research</i> , 2014 , 32, 302-9	3.8	13
141	Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. <i>Nature Materials</i> , 2014 , 13, 988-95	27	143
140	Banded structures in collagen vitrigels for corneal injury repair. <i>Acta Biomaterialia</i> , 2014 , 10, 3615-9	10.8	1
139	Vitrified collagen-based conjunctival equivalent for ocular surface reconstruction. <i>Biomaterials</i> , 2014 , 35, 7398-406	15.6	26
138	Developing biomimetic collagen-based matrix using cyclodextrin for corneal repair 2014 ,		2
137	Biomaterials and Tissue Engineering for Soft Tissue Reconstruction 2014 , 235-241		6
136	Application of a collagen-based membrane and chondroitin sulfate-based hydrogel adhesive for the potential repair of severe ocular surface injuries. <i>Military Medicine</i> , 2014 , 179, 686-94	1.3	13
135	Tissue extracellular matrix nanoparticle presentation in electrospun nanofibers. <i>BioMed Research International</i> , 2014 , 2014, 469120	3	23
134	Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. <i>BioMed Research International</i> , 2014 , 2014, 272481	3	89
133	Fibre-reinforced hydrogels with high optical transparency. <i>International Materials Reviews</i> , 2014 , 59, 264-296	16.1	16
132	An in situ, in vivo murine model for the study of laryngotracheal stenosis. <i>JAMA Otolaryngology - Head and Neck Surgery</i> , 2014 , 140, 961-6	3.9	28

(2012-2014)

131	lipoaspirate, calcium hydroxylapatite, and cross-linked hyaluronic acid. <i>JAMA Facial Plastic Surgery</i> , 2014 , 16, 405-9	3.2	14	
130	Determination of crosslinking density of hydrogels prepared from microcrystalline cellulose. <i>Journal of Applied Polymer Science</i> , 2013 , 127, 4537-4541	2.9	44	
129	The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. <i>Biomaterials</i> , 2013 , 34, 9486-95	15.6	84	•
128	Comparison of 3 techniques of fat grafting and cell-supplemented lipotransfer in athymic rats: a pilot study. <i>Aesthetic Surgery Journal</i> , 2013 , 33, 713-21	2.4	7²	
127	Tissue engineering for in vitro analysis of matrix metalloproteinases in the pathogenesis of keloid lesions. <i>JAMA Facial Plastic Surgery</i> , 2013 , 15, 448-56	3.2	24	
126	Short-chain fatty acid-modified hexosamine for tissue-engineering osteoarthritic cartilage. <i>Tissue Engineering - Part A</i> , 2013 , 19, 2035-44	3.9	12	
125	Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive. <i>Tissue Engineering - Part A</i> , 2013 , 19, 1843-51	3.9	29	
124	Enhanced tissue production through redox control in stem cell-laden hydrogels. <i>Tissue Engineering - Part A</i> , 2013 , 19, 2014-23	3.9	10	
123	Human cartilage repair with a photoreactive adhesive-hydrogel composite. <i>Science Translational Medicine</i> , 2013 , 5, 167ra6	17.5	227	
122	An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. <i>Journal of Orthopaedic Research</i> , 2013 , 31, 392-400	3.8	21	
121	Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. <i>Biomaterials</i> , 2013 , 34, 9365-72	15.6	35	
120	An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. <i>Biomacromolecules</i> , 2013 , 14, 637-43	6.9	26	
119	Photomodulation of Cellular Gene Expression in Hydrogels ACS Macro Letters, 2013, 2, 269-272	6.6	14	
118	Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation. <i>Advanced Functional Materials</i> , 2013 , 23, 575-582	15.6	47	
117	Future perspectives for regenerative medicine in ophthalmology. <i>Middle East African Journal of Ophthalmology</i> , 2013 , 20, 38-45	0.9	13	
116	Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. <i>Tissue Engineering - Part A</i> , 2013 , 19, 1723-32	3.9	41	
115	Differential response of chondrocytes and chondrogenic-induced mesenchymal stem cells to C1-OH tributanoylated N-acetylhexosamines. <i>PLoS ONE</i> , 2013 , 8, e58899	3.7	8	
114	Thermal denaturation of type I collagen vitrified gels. <i>Thermochimica Acta</i> , 2012 , 527, 172-179	2.9	24	

113	Hyaluronic acid-human blood hydrogels for stem cell transplantation. <i>Biomaterials</i> , 2012 , 33, 8026-33	15.6	47
112	Validation of a small animal model for soft tissue filler characterization. <i>Dermatologic Surgery</i> , 2012 , 38, 471-8	1.7	13
111	Regulating synthetic gene networks in 3D materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 15217-22	11.5	31
110	Light activated cell migration in synthetic extracellular matrices. <i>Biomaterials</i> , 2012 , 33, 8040-6	15.6	23
109	Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. <i>Biomaterials</i> , 2012 , 33, 8286-95	15.6	53
108	Moxifloxacin in situ gelling microparticles-bioadhesive delivery system. <i>Results in Pharma Sciences</i> , 2012 , 2, 66-71		11
107	Hyaluronic acid-binding scaffold for articular cartilage repair. <i>Tissue Engineering - Part A</i> , 2012 , 18, 2497-	-506	70
106	Matrix metalloproteinases and inhibitors in cartilage tissue engineering. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2012 , 6, 144-54	4.4	9
105	Bioinspired nanofibers support chondrogenesis for articular cartilage repair. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 10012-7	11.5	170
104	Evaluating Osteoarthritic Chondrocytes through a Novel 3-Dimensional In Vitro System for Cartilage Tissue Engineering and Regeneration. <i>Cartilage</i> , 2012 , 3, 128-40	3	4
103	Multifunctional aliphatic polyester nanofibers for tissue engineering. <i>Biomatter</i> , 2012 , 2, 202-12		32
102	An injectable adipose matrix for soft-tissue reconstruction. <i>Plastic and Reconstructive Surgery</i> , 2012 , 129, 1247-1257	2.7	93
101	Cartilage Tissue Engineering 2011 , 981-995		
100	Injectable Polymers 2011 , 631-664		1
99	Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. <i>Cell and Tissue Research</i> , 2011 , 344, 499-509	4.2	98
98	The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. <i>Biomaterials</i> , 2011 , 32, 1508-16	15.6	52
97	Engineering Cartilage: From Materials to Small Molecules 2011 , 181-209		
96	Mesenchymal stem cell stimulation of tissue growth depends on differentiation state. <i>Stem Cells and Development</i> , 2011 , 20, 405-14	4.4	22

(2009-2011)

95	Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. <i>Science Translational Medicine</i> , 2011 , 3, 93ra67	17.5	77
94	Biomimetics of the Extracellular Matrix: An Integrated Three-Dimensional Fiber-Hydrogel Composite for Cartilage Tissue Engineering. <i>Smart Structures and Systems</i> , 2011 , 7, 213-222		101
93	Characterization of human mesenchymal stem cell-engineered cartilage: analysis of its ultrastructure, cell density and chondrocyte phenotype compared to native adult and fetal cartilage. <i>Cells Tissues Organs</i> , 2010 , 191, 12-20	2.1	22
92	Embryonic progenitor cells in adipose tissue engineering. Facial Plastic Surgery, 2010, 26, 405-12	1.2	4
91	Development of a PEG Derivative Containing Hydrolytically Degradable Hemiacetals. <i>Macromolecules</i> , 2010 , 43, 9588-9590	5.5	26
90	The life of a cell: probing the complex relationships with the world. Cell Stem Cell, 2010, 6, 499-501	18	5
89	A tale of two tissues: stem cells in cartilage and corneal tissue engineering. <i>Current Stem Cell Research and Therapy</i> , 2010 , 5, 37-48	3.6	13
88	ENGINEERING PEPTIDES IN HYDROGELS FOR CARTILAGE TISSUE REGENERATION 2010 , 311-345		1
87	Biomaterials for stem cell differentiation. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8832		39
86	A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. <i>Biomaterials</i> , 2010 , 31, 2788-97	15.6	245
86 85		15.6 5.8	24537
	31, 2788-97 Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells, 2010,		
85	31, 2788-97 Engineering musculoskeletal tissues with human embryonic germ cell derivatives. <i>Stem Cells</i> , 2010 , 28, 765-74		· · ·
85 84	31, 2788-97 Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells, 2010, 28, 765-74 Bone and Cartilage 2010, 219-242 Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue	5.8	37
85 84 83	Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells, 2010, 28, 765-74 Bone and Cartilage 2010, 219-242 Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue Engineering - Part A, 2009, 15, 479-86	5.8 3.9	37 16
85 84 83 82	Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells, 2010, 28, 765-74 Bone and Cartilage 2010, 219-242 Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue Engineering - Part A, 2009, 15, 479-86 Application of stem cells for articular cartilage regeneration. Journal of Knee Surgery, 2009, 22, 60-71 Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. Journal of Biomedical Materials Research - Part B Applied Biomaterials,	5.8 3.9 2.4	37 16 36
85 84 83 82 81	Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells, 2010, 28, 765-74 Bone and Cartilage 2010, 219-242 Embryonic germ cells are capable of adipogenic differentiation in vitro and in vivo. Tissue Engineering - Part A, 2009, 15, 479-86 Application of stem cells for articular cartilage regeneration. Journal of Knee Surgery, 2009, 22, 60-71 Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90, 818-31	5.8 3.9 2.4 3.5	37 16 36 63

77	Decellularization of bovine corneas for tissue engineering applications. <i>Acta Biomaterialia</i> , 2009 , 5, 18	39 <u>1</u> 478	106
76	Synthesis and characterization of a chondroitin sulfate-polyethylene glycol corneal adhesive. Journal of Cataract and Refractive Surgery, 2009 , 35, 567-76	2.3	35
75	Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. <i>Lab on A Chip</i> , 2009 , 9, 3221-7	7.2	63
74	Characterizing ECM production by cells encapsulated in hydrogels. <i>Methods in Molecular Biology</i> , 2009 , 522, 349-62	1.4	10
73	Cartilage Tissue Engineering 2008 , 1176-1197		
72	Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. <i>Matrix Biology</i> , 2008 , 27, 12-21	11.4	289
71	The study of abnormal bone development in the Apert syndrome Fgfr2+/S252W mouse using a 3D hydrogel culture model. <i>Bone</i> , 2008 , 43, 55-63	4.7	33
70	Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment. <i>Tissue Engineering - Part A</i> , 2008 , 14, 1843-51	3.9	82
69	In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 20641-6	11.5	223
68	Enhanced chondrogenic differentiation of embryonic stem cells by coculture with hepatic cells. Stem Cells and Development, 2008 , 17, 555-63	4.4	18
67	Biomaterials engineered for integration. <i>Materials Today</i> , 2008 , 11, 44-51	21.8	62
66	Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2008 , 2, 499-506	4.4	46
65	Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels. <i>Acta Biomaterialia</i> , 2008 , 4, 1139-1147	10.8	45
64	Controlled differentiation of stem cells. Advanced Drug Delivery Reviews, 2008, 60, 199-214	18.5	261
63	Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. <i>PLoS ONE</i> , 2008 , 3, e2498	3.7	104
62	Photopolymerization 2008 , 2150-2162		
61	Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. <i>Stem Cells</i> , 2007 , 25, 2730-8	5.8	179
60	Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells. <i>Journal of Cellular Physiology</i> , 2007 , 212, 281-4	7	105

(2006-2007)

59	Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. <i>Nature Materials</i> , 2007 , 6, 385-92	27	527
58	Designing zonal organization into tissue-engineered cartilage. <i>Tissue Engineering</i> , 2007 , 13, 405-14		125
57	In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. <i>Plastic and Reconstructive Surgery</i> , 2007 , 119, 112-120	2.7	113
56	Response of zonal chondrocytes to extracellular matrix-hydrogels. <i>FEBS Letters</i> , 2007 , 581, 4172-8	3.8	73
55	Cartilage Tissue Engineering 2007 , 22-1-22-11		1
54	Morphogenetic Signals from Chondrocytes Promote Osteochondrogenic Potential of Mesenchymal Stem Cells in vitro and in vivo. <i>FASEB Journal</i> , 2007 , 21, A1233	0.9	
53	Biomaterials-Directed In Vivo Commitment of Mesenchymal Cells Derived from Human Embryonic Stem Cells. <i>FASEB Journal</i> , 2007 , 21, A145	0.9	
52	Cartilage tissue engineering: Directed differentiation of embryonic stem cells in three-dimensional hydrogel culture. <i>Methods in Molecular Biology</i> , 2007 , 407, 351-73	1.4	47
51	Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. <i>Biotechnology and Bioengineering</i> , 2006 , 95, 1061-9	4.9	43
50	An analysis of the integration between articular cartilage and nondegradable hydrogel using magnetic resonance imaging. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2006 , 77, 144-8	3.5	33
49	Chondrogenic differentiation of human embryonic germ cell derived cells in hydrogels. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2006 , 2006, 2643-6		9
48	Modified microkeratome-assisted posterior lamellar keratoplasty using a tissue adhesive. <i>JAMA Ophthalmology</i> , 2006 , 124, 210-4		22
47	Stem Cells: From Bench to BedsideStem Cells: From Bench to Bedside edited by Ariff Bongso and Eng Hin Lee World Scientific, Hackensack, NJ, 2005. 565pp. ISBN 981-256-126-9. <i>Tissue Engineering</i> , 2006 , 12, 3257-3257		
46	Cellular Photoencapsulation in Hydrogels 2006 , 213-238		3
45	Engineering complex tissues. <i>Tissue Engineering</i> , 2006 , 12, 3307-39		459
44	Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. <i>Stem Cells</i> , 2006 , 24, 284-91	5.8	211
43	Hydrogels for Musculoskeletal Tissue Engineering. Advances in Polymer Science, 2006, 95-144	1.3	111
42	The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system. Stem Cells and Development, 2006 , 15, 295-303	4.4	75

41	Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels. <i>Tissue Engineering</i> , 2006 , 12, 2695-706		238
40	Reorganization of actin filaments enhances chondrogenic differentiation of cells derived from murine embryonic stem cells. <i>Biochemical and Biophysical Research Communications</i> , 2006 , 348, 421-7	3.4	28
39	Biodegradable and photocrosslinkable polyphosphoester hydrogel. <i>Biomaterials</i> , 2006 , 27, 1027-34	15.6	161
38	Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. <i>Biomaterials</i> , 2006 , 27, 5268-7	'6 5.6	165
37	Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. <i>Biomaterials</i> , 2006 , 27, 6015-23	15.6	100
36	Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy. <i>Stem Cells</i> , 2006 , 24, 1213-7	5.8	54
35	Bioresponsive phosphoester hydrogels for bone tissue engineering. <i>Tissue Engineering</i> , 2005 , 11, 201-1	3	162
34	Improving long-term projection in nipple reconstruction using human acellular dermal matrix: an animal model. <i>Annals of Plastic Surgery</i> , 2005 , 55, 304-9	1.7	21
33	Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. <i>Biomaterials</i> , 2005 , 26, 1211-8	15.6	657
32	Noninvasive mitochondrial imaging in live cell culture. <i>Photochemistry and Photobiology</i> , 2005 , 81, 1569	-3.16	11
31	Musculoskeletal differentiation of cells derived from human embryonic germ cells. <i>Stem Cells</i> , 2005 , 23, 113-23	5.8	59
30	The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. <i>Biomaterials</i> , 2005 , 26, 5991-8	15.6	395
29	Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse. <i>Development (Cambridge)</i> , 2005 , 132, 3537-48	6.6	148
28	A modified chondroitin sulfate aldehyde adhesive for sealing corneal incisions. <i>Investigative Ophthalmology and Visual Science</i> , 2005 , 46, 1247-50		64
27	Injectable Systems for Cartilage Tissue Engineering 2005 , 169-188		3
26	Injectable cartilage tissue engineering. Expert Opinion on Biological Therapy, 2004, 4, 1849-59	5.4	97
25	Embryonic stem cells: potential for more impact. <i>Trends in Biotechnology</i> , 2004 , 22, 155-6	15.1	14
24	Engineering structurally organized cartilage and bone tissues. <i>Annals of Biomedical Engineering</i> , 2004 , 32, 148-59	4.7	245

23	Adult stem cell driven genesis of human-shaped articular condyle. <i>Annals of Biomedical Engineering</i> , 2004 , 32, 911-23	4.7	153
22	Photocrosslinkable polysaccharides based on chondroitin sulfate. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 68, 28-33		163
21	An extracellular matrix extract for tissue-engineered cartilage. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2003 , 22, 71-6		14
20	Novel human endothelial cell-engineered polyurethane biomaterials for cardiovascular biomedical applications. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 65, 498-510		29
19	Synthesis and characterization of a novel degradable phosphate-containing hydrogel. <i>Biomaterials</i> , 2003 , 24, 3969-80	15.6	196
18	Heterogeneous-Phase Reaction of Glycidyl Methacrylate and Chondroitin Sulfate: Mechanism of Ring-Opening Transesterification Competition. <i>Macromolecules</i> , 2003 , 36, 2556-2562	5.5	80
17	In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. <i>Tissue Engineering</i> , 2003 , 9, 679-88		345
16	In situ forming degradable networks and their application in tissue engineering and drug delivery. Journal of Controlled Release, 2002 , 78, 199-209	11.7	393
15	In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. <i>Biomacromolecules</i> , 2002 , 3, 1286-95	6.9	73
14	Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. <i>Journal of Orthopaedic Research</i> , 2001 , 19, 1098-104	3.8	234
13	Cogelation of Hydrolyzable Cross-Linkers and Poly(ethylene oxide) Dimethacrylate and Their Use as Controlled Release Vehicles. <i>ACS Symposium Series</i> , 1999 , 1-13	0.4	1
12	Transdermal photopolymerized adhesive for seroma prevention. <i>Plastic and Reconstructive Surgery</i> , 1999 , 103, 531-5	2.7	28
11	Transdermal Photopolymerization of Poly (Ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage. <i>Plastic and Reconstructive Surgery</i> , 1999 , 104, 1014-1022	2.7	125
10	Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. <i>Plastic and Reconstructive Surgery</i> , 1999 , 104, 1014-22	2.7	147
9	A tissue-engineered conduit for peripheral nerve repair. JAMA Otolaryngology, 1998, 124, 1081-6		143
8	In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. <i>Annals of Plastic Surgery</i> , 1998 , 40, 413-20; discussion 420-1	1.7	77
7	Synthesis and Characterization of Photo-Cross-Linked Polymers Based on Poly(l-lactic acid-co-l-aspartic acid). <i>Macromolecules</i> , 1997 , 30, 2182-2184	5.5	76
6	Polysaccharide hydrogels for regenerative medicine applications247-262		

Single cell RNA-seq in regenerative and fibrotic biomaterial environments defines new macrophage subsets 1

4 Intercellular signaling dynamics from a single cell atlas of the biomaterials response	1
--	---

3 Interleukin-17 and senescence regulate the foreign body response 6

Photopolymerization5971-5983

Tissue Engineering, Cartilage: Injectable Systems7972-7985