

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4821017/publications.pdf Version: 2024-02-01

VANCLI

#	Article	IF	CITATIONS
1	Cuprous oxide single-crystal film assisted highly efficient solar hydrogen production on large ships for long-term energy storage and zero-emission power generation. Journal of Power Sources, 2022, 527, 231133.	7.8	19
2	Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation. Materials Research Bulletin, 2022, 150, 111789.	5.2	72
3	Efficient photocathode performance of lithium ion doped LaFeO ₃ nanorod arrays in hydrogen evolution. New Journal of Chemistry, 2021, 45, 3463-3468.	2.8	12
4	Preparation Strategies of p-Type Cuprous Oxide and Its Solar Energy Conversion Performance. Energy & amp; Fuels, 2021, 35, 17334-17352.	5.1	31
5	A New Concept and Strategy for Photovoltaic and Thermoelectric Power Generation Based on Anisotropic Crystal Facet Unit. Advanced Functional Materials, 2020, 30, 2002606.	14.9	26
6	Performance improvement of a p-Cu ₂ O nanocrystal photocathode with an ultra-thin silver protective layer. Chemical Communications, 2019, 55, 9963-9966.	4.1	15
7	A hydrophobic polymer stabilized p-Cu ₂ O nanocrystal photocathode for highly efficient solar water splitting. Journal of Materials Chemistry A, 2019, 7, 15593-15598.	10.3	45
8	Flexible cupric oxide photocathode with enhanced stability for renewable hydrogen energy production from solar water splitting. RSC Advances, 2019, 9, 8350-8354.	3.6	25
9	Facile fire treatment of nanostructured hematite with an enhanced photoelectrochemical water splitting performance. Journal of Materials Chemistry A, 2016, 4, 14974-14977.	10.3	21
10	A nanostructured hematite film prepared by a facile "top down―method for application in photoelectrochemistry. Dalton Transactions, 2016, 45, 16221-16230.	3.3	4
11	Facet-selective charge carrier transport, deactivation mechanism and stabilization of a Cu ₂ O photo-electro-catalyst. Physical Chemistry Chemical Physics, 2016, 18, 7023-7026.	2.8	23
12	Enhancing the photoelectrochemical water splitting activity of rutile nanorods by removal of surface hydroxyl groups. Catalysis Today, 2016, 259, 360-367.	4.4	19
13	Templating Sol–Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies. ACS Applied Materials & Interfaces, 2015, 7, 16999-17007.	8.0	41
14	Thermal conversion synthesis of Cu2O photocathode and the promoting effects of carbon coating. Catalysis Communications, 2015, 66, 1-5.	3.3	20
15	Ni-doped InN/GaZnON composite catalyst for overall water splitting under visible light irradiation. International Journal of Hydrogen Energy, 2015, 40, 15448-15453.	7.1	16
16	Improved photoelectrochemical property of a nanocomposite NiO/CdS@ZnO photoanode for water splitting. Solar Energy Materials and Solar Cells, 2015, 132, 40-46.	6.2	42
17	PdS-modified CdS/NiS composite as an efficient photocatalyst for H2 evolution in visible light. Catalysis Today, 2014, 225, 136-141.	4.4	57
18	Photocatalytic overall water splitting under visible light over an In–Ni–Ta–O–N solid solution without an additional cocatalyst. International Journal of Hydrogen Energy, 2014, 39, 731-735.	7.1	20

Yang Li

#	Article	IF	CITATIONS
19	In-depth investigation of an In–Ni–Ta–O–N photocatalyst for overall water splitting under sunlight. Journal of Catalysis, 2014, 320, 208-214.	6.2	9
20	Cobalt sulfide quantum dots modified TiO 2 nanoparticles for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 15387-15393.	7.1	53
21	Advanced three-component ZnO/Ag/CdS nanocomposite photoanode for photocatalytic water splitting. Journal of Power Sources, 2014, 269, 466-472.	7.8	82
22	Enhancing the activity of a SiC–TiO2 composite catalyst forÂphoto-stimulated catalytic water splitting. International Journal of Hydrogen Energy, 2013, 38, 3898-3904.	7.1	58
23	Efficient photocatalytic hydrogen production from waterÂoverÂaÂCuO and carbon fiber comodified TiO2 nanocompositeÂphotocatalyst. International Journal of Hydrogen Energy, 2013, 38, 16649-16655.	7.1	44