Jinah Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820728/publications.pdf

Version: 2024-02-01

186265 182427 2,713 68 28 51 citations h-index g-index papers 68 68 68 4077 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Smoothened Variants Explain the Majority of Drug Resistance in Basal Cell Carcinoma. Cancer Cell, 2015, 27, 342-353.	16.8	337
2	Cutaneous Lymphoma International Consortium Study of Outcome in Advanced Stages of Mycosis Fungoides and Sézary Syndrome: Effect of Specific Prognostic Markers on Survival and Development of a Prognostic Model. Journal of Clinical Oncology, 2015, 33, 3766-3773.	1.6	328
3	Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nature Genetics, 2014, 46, 1060-1062.	21.4	125
4	An investigator-initiated open-label clinical trial of vismodegib as a neoadjuvant to surgery for high-risk basal cell carcinoma. Journal of the American Academy of Dermatology, 2014, 71, 904-911.e1.	1.2	118
5	Immunohistochemical analysis of lichenoid reactions in patients treated with antiâ€PDâ€L1 and antiâ€PDâ€L therapy. Journal of Cutaneous Pathology, 2016, 43, 339-346.	1.3	101
6	Characterization of dermatitis after PD-1/PD-L1 inhibitor therapy and association with multiple oncologic outcomes: A retrospective case-control study. Journal of the American Academy of Dermatology, 2018, 79, 1047-1052.	1.2	95
7	SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. Journal of Cutaneous Pathology, 2010, 37, 944-952.	1.3	91
8	Pilot studies demonstrate the potential benefits of antiinflammatory therapy in human lymphedema. JCI Insight, 2018, 3, .	5.0	89
9	An independent validation of a gene expression signature to differentiate malignant melanoma from benign melanocytic nevi. Cancer, 2017, 123, 617-628.	4.1	86
10	A Case Report of Unresectable Cutaneous Squamous Cell Carcinoma Responsive to Pembrolizumab, a Programmed Cell Death Protein 1 Inhibitor. JAMA Dermatology, 2016, 152, 106.	4.1	83
11	Primary Cilium Depletion Typifies Cutaneous Melanoma In Situ and Malignant Melanoma. PLoS ONE, 2011, 6, e27410.	2.5	83
12	Primary cutaneous aggressive epidermotropic cytotoxic T-cell lymphomas: reappraisal of a provisional entity in the 2016 WHO classification of cutaneous lymphomas. Modern Pathology, 2017, 30, 761-772.	5. 5	74
13	Useful Parameters for Distinguishing Subcutaneous Panniculitis-like T-Cell Lymphoma From Lupus Erythematosus Panniculitis. American Journal of Surgical Pathology, 2016, 40, 745-754.	3.7	69
14	Sox10 is expressed in primary melanocytic neoplasms of various histologies but not in fibrohistiocytic proliferations and histiocytoses. Journal of the American Academy of Dermatology, 2012, 67, 717-726.	1.2	63
15	Mosaic Activating RAS Mutations in Nevus Sebaceus and Nevus Sebaceus Syndrome. Journal of Investigative Dermatology, 2013, 133, 824-827.	0.7	55
16	Diagnostic Distinction of Malignant Melanoma and Benign Nevi by a Gene Expression Signature and Correlation to Clinical Outcomes. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1107-1113.	2.5	53
17	Primary cutaneous anaplastic large cell lymphoma. Journal of Cutaneous Pathology, 2017, 44, 570-577.	1.3	47
18	Ibrutinibâ€associated rash: a single entre experience of clinicopathological features and management. British Journal of Haematology, 2018, 180, 164-166.	2.5	45

#	Article	IF	Citations
19	ETV3-NCOA2 in indeterminate cell histiocytosis: clonal translocation supports sui generis. Blood, 2015, 126, 2344-2345.	1.4	44
20	Intralymphatic Cutaneous Anaplastic Large Cell Lymphoma/Lymphomatoid Papulosis. American Journal of Surgical Pathology, 2014, 38, 1203-1211.	3.7	42
21	Nodeâ€positive cutaneous squamous cell carcinoma of the head and neck: Survival, highâ€risk features, and adjuvant chemoradiotherapy outcomes. Head and Neck, 2017, 39, 881-885.	2.0	41
22	Association Between Programmed Death Ligand 1 Expression in Patients With Basal Cell Carcinomas and the Number of Treatment Modalities. JAMA Dermatology, 2017, 153, 285.	4.1	39
23	Quantitative comparison of MiTF, Melan-A, HMB-45 and Mel-5 in solar lentigines and melanoma in situ. Journal of Cutaneous Pathology, 2011, 38, no-no.	1.3	37
24	A case of metastatic basal cell carcinoma treated with continuous PD-1 inhibitor exposure even after subsequent initiation of radiotherapy and surgery. JAAD Case Reports, 2018, 4, 248-250.	0.8	37
25	Intravascular ALK-negative Anaplastic Large Cell Lymphoma With Localized Cutaneous Involvement and an Indolent Clinical Course. American Journal of Surgical Pathology, 2013, 37, 617-623.	3.7	36
26	Update to an open-label clinical trial of vismodegib as neoadjuvant before surgery for high-risk basal cell carcinoma (BCC). Journal of the American Academy of Dermatology, 2016, 75, 213-215.	1.2	33
27	Reexamining the Threshold for Reexcision of Histologically Transected Dysplastic Nevi. JAMA Dermatology, 2016, 152, 1327.	4.1	32
28	Activating HRAS Mutation in Nevus Spilus. Journal of Investigative Dermatology, 2014, 134, 1766-1768.	0.7	31
29	The frequency of dual TCR-PCR clonality in granulomatous disorders. Journal of Cutaneous Pathology, 2011, 38, 704-709.	1.3	25
30	Indeterminate Dendritic Cell Tumor: A Report of Two New Cases Lacking the ETV3-NCOA2 Translocation and a Literature Review. American Journal of Dermatopathology, 2018, 40, 736-748.	0.6	23
31	PDâ€L1 Expression and Tumorâ€Infiltrating Lymphocytes in Highâ€Risk and Metastatic Cutaneous Squamous Cell Carcinoma. Otolaryngology - Head and Neck Surgery, 2019, 160, 93-99.	1.9	23
32	Appropriate use criteria in dermatopathology: Initial recommendations from the American Society of Dermatopathology. Journal of Cutaneous Pathology, 2018, 45, 563-580.	1.3	22
33	Systemic panniculitisâ€ike Tâ€cell lymphoma with involvement of mesenteric fat and subcutis. Journal of Cutaneous Pathology, 2015, 42, 46-49.	1.3	21
34	Localized bullous pemphigoid in a melanoma patient with dual exposure to PD-1 checkpoint inhibition and radiation therapy. JAAD Case Reports, 2017, 3, 404-406.	0.8	19
35	Variability in the Expression of Immunohistochemical Markers: Implications for Biomarker Interpretation in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2018, 138, 1204-1206.	0.7	19
36	Fluorescence In Situ Hybridization Analysis of Atypical Melanocytic Proliferations and Melanoma in Young Patients. Pediatric Dermatology, 2014, 31, 561-569.	0.9	17

#	Article	IF	CITATIONS
37	Subcutaneous panniculitisâ€like Tâ€cell lymphoma: Pediatric case series demonstrating heterogeneous presentation and option for watchful waiting. Pediatric Blood and Cancer, 2015, 62, 2025-2028.	1.5	16
38	Evidence behind the use of molecular tests in melanocytic lesions and practice patterns of these tests by dermatopathologists. Journal of Cutaneous Pathology, 2018, 45, 839-846.	1.3	16
39	Appropriate use criteria in dermatopathology: Initial recommendations from the American Society of Dermatopathology. Journal of the American Academy of Dermatology, 2019, 80, 189-207.e11.	1.2	16
40	<scp><i>TERT</i></scp> and <scp><i>TERT</i></scp> promoter in melanocytic neoplasms: Current concepts in pathogenesis, diagnosis, and prognosis. Journal of Cutaneous Pathology, 2020, 47, 710-719.	1.3	16
41	Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin. Modern Pathology, 2018, 31, 1479-1486.	5.5	14
42	Role of imaging in low-grade cutaneous B-cell lymphoma presenting in the skin. Journal of the American Academy of Dermatology, 2019, 81, 970-976.	1.2	14
43	Ciliation Index Is a Useful Diagnostic Tool in Challenging Spitzoid Melanocytic Neoplasms. Journal of Investigative Dermatology, 2020, 140, 1401-1409.e2.	0.7	12
44	High-throughput Sequencing of Subcutaneous Panniculitis-like T-Cell Lymphoma Reveals Candidate Pathogenic Mutations. Applied Immunohistochemistry and Molecular Morphology, 2019, 27, 740-748.	1.2	11
45	Use of the Ciliation Index to Distinguish Invasive Melanoma From Associated Conventional Melanocytic Nevi. American Journal of Dermatopathology, 2020, 42, 11-15.	0.6	11
46	Utility of CD30, Kiâ€67, and p53 in assisting with the diagnosis of mycosis fungoides with large cell transformation. Journal of Cutaneous Pathology, 2019, 46, 33-43.	1.3	10
47	Loss of primary cilia correlates withÂcytologic severity in dysplastic melanocytic nevi. Journal of Cutaneous Pathology, 2016, 43, 113-119.	1.3	9
48	Immunohistochemistry reveals an increased proportion of <scp>MYC</scp> â€positive cells in subcutaneous panniculitisâ€like Tâ€cell lymphoma compared with lupus panniculitis. Journal of Cutaneous Pathology, 2017, 44, 925-930.	1.3	8
49	Mutational profile of primary dermal melanoma: A case series. Journal of the American Academy of Dermatology, 2016, 75, 1263-1265.e5.	1.2	7
50	Reply to: "Use of immortal time within survival analysis― Journal of the American Academy of Dermatology, 2019, 80, e19-e20.	1.2	7
51	Depletion of primary cilium in acral melanoma. Journal of Cutaneous Pathology, 2019, 46, 665-671.	1.3	7
52	Molecular Profiling to Diagnose a Case of Atypical Dermatomyositis. Journal of Investigative Dermatology, 2013, 133, 2796-2799.	0.7	6
53	Markers for sebaceoma show a spectrum of cell cycle regulators, tumor suppressor genes, and oncogenes. North American Journal of Medical Sciences, 2015, 7, 275.	1.7	6
54	Dermal eosinophilic infiltrate in junctional epidermolysis bullosa. Journal of Cutaneous Pathology, 2015, 42, 559-563.	1.3	5

#	Article	IF	CITATIONS
55	Lymph node involvement by mycosis fungoides and Sézary syndrome mimicking angioimmunoblastic T-cell lymphoma. Human Pathology, 2015, 46, 1382-1389.	2.0	5
56	Cutaneous Neonatal Lupus Arising in an Infant Conceived From an Oocyte Donation Pregnancy. JAMA Dermatology, 2016, 152, 846.	4.1	5
57	Appropriate use criteria for ancillary diagnostic testing in dermatopathology: New recommendations for 11 tests and 220 clinical scenarios from the American Society of Dermatopathology Appropriate Use Criteria Committee. Journal of Cutaneous Pathology, 2022, 49, 231-245.	1.3	5
58	Congenital cutaneous Langerhans histiocytosis with mixed cell populations. Journal of Cutaneous Pathology, 2015, 42, 1031-1033.	1.3	4
59	Expression of PD-L1 in mastocytosis. Journal of the American Academy of Dermatology, 2016, 74, 1010-1012.	1.2	4
60	Identification of novel targetable mutations in metastatic anorectal melanoma by next-generation sequencing. JAAD Case Reports, 2017, 3, 539-541.	0.8	4
61	Acral verrucaâ€like presentation of chronic graftâ€vs.â€host disease. Journal of Cutaneous Pathology, 2016, 43, 236-241.	1.3	3
62	A growing nodule on the forearm of an 84â€yearâ€old man. Journal of Cutaneous Pathology, 2017, 44, 1-4.	1.3	3
63	Histopathologic approach to epidermotropic lymphocytic infiltrates. Seminars in Cutaneous Medicine and Surgery, 2018, 37, 56-60.	1.6	3
64	Durable Responses with Pembrolizumab in Relapsed/Refractory Mycosis Fungoides and Sézary Syndrome: Final Results from a Phase 2 Multicenter Study. Blood, 2018, 132, 2896-2896.	1.4	2
65	Short Intussusception Valves Prevent Reflux After Jejunal Interposition Bilioduodenal Anastomosis. HPB Surgery, 1991, 5, 29-34.	2.2	1
66	Systemic T cell lymphoma mimicking subcutaneous panniculitisâ€like Tâ€cell lymphoma. Journal of Cutaneous Pathology, 2016, 43, 919-919.	1.3	0
67	Rapidly spreading subcutaneous nodules in a 2â€yearâ€old boy. Pediatric Dermatology, 2018, 35, 137-138.	0.9	O
68	NUTRITIONAL DEFICIENCY CONTRIBUTING TO REFRACTORY ERYTHRODERMA IN HEMATOPOETIC CELL TRANSPLANT PATIENTS: DISTINCTIVE CLINICAL AND HISTOPATHOLOGICAL FINDINGS. Journal of the American Academy of Dermatology, 2021, , .	1.2	0