
Ulrich Achatz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820715/publications.pdf Version: 2024-02-01

Прен Асната

#	Article	IF	CITATIONS
1	Stochastic Parameterization: Toward a New View of Weather and Climate Models. Bulletin of the American Meteorological Society, 2017, 98, 565-588.	1.7	247
2	Cosmic-ray particle transport in weakly turbulent plasmas. Part 1. Theory. Journal of Plasma Physics, 1993, 49, 63-77.	0.7	65
3	On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
4	Regime of Validity of Soundproof Atmospheric Flow Models. Journals of the Atmospheric Sciences, 2010, 67, 3226-3237.	0.6	53
5	A Two-Layer Model with Empirical Linear Corrections and Reduced Order for Studies of Internal Climate Variability. Journals of the Atmospheric Sciences, 1999, 56, 3140-3160.	0.6	49
6	Gravity waves, scale asymptotics and the pseudo-incompressible equations. Journal of Fluid Mechanics, 2010, 663, 120-147.	1.4	40
7	Mechanisms controlling the diurnal solar tide: Analysis using a GCM and a linear model. Journal of Geophysical Research, 2008, 113, .	3.3	37
8	Interplanetary transport of solar electrons and protons: Effect of dissipative processes in the magnetic field power spectrum. Journal of Geophysical Research, 1993, 98, 13261-13280.	3.3	34
9	On the role of optimal perturbations in the instability of monochromatic gravity waves. Physics of Fluids, 2005, 17, 094107.	1.6	32
10	Gravity-wave breaking: Linear and primary nonlinear dynamics. Advances in Space Research, 2007, 40, 719-733.	1.2	31
11	The Interaction between Atmospheric Gravity Waves and Large-Scale Flows: An Efficient Description beyond the Nonacceleration Paradigm. Journals of the Atmospheric Sciences, 2016, 73, 4833-4852.	0.6	31
12	The Primary Nonlinear Dynamics of Modal and Nonmodal Perturbations of Monochromatic Inertia–Gravity Waves. Journals of the Atmospheric Sciences, 2007, 64, 74-95.	0.6	30
13	On the application of Wentzel–Kramer–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 676-697.	1.0	28
14	Principal Interaction Patterns in Baroclinic Wave Life Cycles. Journals of the Atmospheric Sciences, 1995, 52, 3201-3213.	0.6	25
15	On the Closure Problem in the Reduction of Complex Atmospheric Models by PIPs and EOFs: A Comparison for the Case of a Two-Layer Model with Zonally Symmetric Forcing. Journals of the Atmospheric Sciences, 1997, 54, 2452-2474.	0.6	25
16	Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics. Meteorologische Zeitschrift, 2015, 23, 611-635.	0.5	24
17	The dependence of the nonmigrating diurnal tide in the mesosphere and lower thermosphere on stationary planetary waves. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 733-754.	0.6	23
18	Gravity wave emission in an atmosphere-like configuration of the differentially heated rotating annulus experiment. Journal of Fluid Mechanics, 2014, 758, 287-311.	1.4	19

ULRICH ACHATZ

#	Article	IF	CITATIONS
19	The interaction between gravity waves and solar tides in a linear tidal model with a 4â€D rayâ€tracing gravityâ€wave parameterization. Journal of Geophysical Research: Space Physics, 2016, 121, 8936-8950.	0.8	19
20	Shear and Static Instability of Inertia–Gravity Wave Packets: Short-Term Modal and Nonmodal Growth. Journals of the Atmospheric Sciences, 2006, 63, 397-413.	0.6	18
21	The interaction between synopticâ€scale balanced flow and a finiteâ€amplitude mesoscale wave field throughout all atmospheric layers: weak and moderately strong stratification. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 342-361.	1.0	18
22	Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation. Theoretical and Computational Fluid Dynamics, 2013, 27, 297-317.	0.9	17
23	The interaction between gravity waves and solar tides: Results from 4â€D ray tracing coupled to a linear tidal model. Journal of Geophysical Research: Space Physics, 2015, 120, 6795-6817.	0.8	16
24	Recent progress in modeling imbalance in the atmosphere and ocean. Physical Review Fluids, 2019, 4, .	1.0	16
25	Primitive-Equation-Based Low-Order Models with Seasonal Cycle. Part I: Model Construction. Journals of the Atmospheric Sciences, 2003, 60, 465-477.	0.6	16
26	Parameterization of stochastic multiscale triads. Nonlinear Processes in Geophysics, 2016, 23, 435-445.	0.6	16
27	Optimal Growth in Inertia–Gravity Wave Packets: Energetics, Long-Term Development, and Three-Dimensional Structure. Journals of the Atmospheric Sciences, 2006, 63, 414-434.	0.6	15
28	Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models. Journals of the Atmospheric Sciences, 2013, 70, 1833-1846.	0.6	15
29	Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part II: Wave Intermittency Simulated with Convective Sources. Journals of the Atmospheric Sciences, 2021, 78, 1339-1357.	0.6	15
30	Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part I: Propagation Model Including Nondissipative Wave–Mean-Flow Interactions. Journals of the Atmospheric Sciences, 2021, 78, 1317-1338.	0.6	15
31	Cosmic-ray particle transport in weakly turbulent plasmas. Part 2. Mean free path of cosmic-ray protons. Journal of Plasma Physics, 1993, 50, 85-107.	0.7	14
32	Spontaneous inertia–gravity wave emission in the differentially heated rotating annulusÂexperiment. Journal of Fluid Mechanics, 2018, 838, 5-41.	1.4	14
33	Quasi-linear theory and the phenomenology of interplanetary solar particle transport. Astrophysical Journal, 1993, 407, L95.	1.6	14
34	Range of validity of an extended WKB theory for atmospheric gravity waves: one-dimensional and two-dimensional case. Journal of Fluid Mechanics, 2013, 729, 330-363.	1.4	13
35	A Conservative Integration of the Pseudo-Incompressible Equations with Implicit Turbulence Parameterization. Monthly Weather Review, 2013, 141, 861-886.	0.5	13
36	Efficient Modeling of the Interaction of Mesoscale Gravity Waves with Unbalanced Large-Scale Flows: Pseudomomentum-Flux Convergence versus Direct Approach. Journals of the Atmospheric Sciences, 2019, 76, 2715-2738.	0.6	13

ULRICH ACHATZ

#	Article	IF	CITATIONS
37	Primitive-Equation-Based Low-Order Models with Seasonal Cycle. Part II: Application to Complexity and Nonlinearity of Large-Scale Atmosphere Dynamics. Journals of the Atmospheric Sciences, 2003, 60, 478-490.	0.6	13
38	Secondary Instabilities in Breaking Inertia–Gravity Waves. Journals of the Atmospheric Sciences, 2012, 69, 303-322.	0.6	12
39	Interactions between Mesoscale and Submesoscale Gravity Waves and Their Efficient Representation in Mesoscale-Resolving Models. Journals of the Atmospheric Sciences, 2018, 75, 2257-2280.	0.6	11
40	A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Experiments in Fluids, 2020, 61, 1.	1.1	11
41	Modal and Nonmodal Perturbations of Monochromatic High-Frequency Gravity Waves: Primary Nonlinear Dynamics. Journals of the Atmospheric Sciences, 2007, 64, 1977-1994.	0.6	8
42	Subgrid-scale closure for the inviscid Burgers-Hopf equation. Communications in Mathematical Sciences, 2013, 11, 757-777.	0.5	8
43	Validation of Large-Eddy Simulation Methods for Gravity Wave Breaking. Journals of the Atmospheric Sciences, 2015, 72, 3537-3562.	0.6	7
44	Reappraising the appropriate calculation of a common meteorological quantity: potential temperature. Atmospheric Chemistry and Physics, 2020, 20, 15585-15616.	1.9	7
45	Stochastic subgridâ€scale parametrization for oneâ€dimensional shallowâ€water dynamics using stochastic mode reduction. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1975-1990.	1.0	6
46	Interaction Between Stratospheric Kelvin Waves and Gravity Waves in the Easterly QBO Phase. Geophysical Research Letters, 2021, 48, e2021GL095226.	1.5	5
47	On the construction of a direct numerical simulation of a breaking inertia-gravity wave in the upper mesosphere. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,613-11,640.	1.2	4
48	Finite-amplitude gravity waves in the atmosphere: travelling wave solutions. Journal of Fluid Mechanics, 2017, 826, 1034-1065.	1.4	4
49	An application of WKBJ theory for triad interactions of internal gravity waves in varying background flows. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1112-1134.	1.0	4
50	Finite-volume models with implicit subgrid-scale parameterization for the differentially heated rotating annulus. Meteorologische Zeitschrift, 2015, 23, 561-580.	0.5	2
51	Climate Dependence in Empirical Parameters of Subgrid-Scale Parameterizations using the Fluctuation–Dissipation Theorem. Journals of the Atmospheric Sciences, 2018, 75, 3843-3860.	0.6	2
52	Direct Numerical Simulation of Breaking Atmospheric Gravity Waves. , 2015, , 593-607.		1
53	Solar Diurnal Tides in the Middle Atmosphere: Interactions with the Zonal-Mean Flow, Planetary Waves and Gravity Waves. Springer Atmospheric Sciences, 2013, , 507-516.	0.4	0
54	Planetary geostrophic Boussinesq dynamics: Barotropic flow, baroclinic instability and forced stationary waves. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3751-3765.	1.0	0