
L Jesus Garcia-Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Grape-Derived Prebiotic Selectively Enhances Abundance and Metabolic Activity of Butyrate-Producing Bacteria in Faecal Samples. Frontiers in Microbiology, 2021, 12, 639948.	3.5	3
2	RAID Prediction: Pilot Study of Fecal Microbial Signature With Capacity to Predict Response to Anti-TNF Treatment. Inflammatory Bowel Diseases, 2021, 27, S63-S66.	1.9	10
3	A novel distinctive form of identification for differential diagnosis of irritable bowel syndrome, inflammatory bowel disease, and healthy controls. GastroHep, 2020, 2, 193-204.	0.6	3
4	New fecal bacterial signature for colorectal cancer screening reduces the fecal immunochemical test false-positive rate in a screening population. PLoS ONE, 2020, 15, e0243158.	2.5	14
5	Evaluation of bacterial biomarkers to aid in challenging inflammatory bowel diseases diagnostics and subtype classification. World Journal of Gastrointestinal Pathophysiology, 2020, 11, 64-77.	1.0	8
6	Reduction of faecal immunochemical test falseâ€positive results using a signature based on faecal bacterial markers. Alimentary Pharmacology and Therapeutics, 2019, 49, 1410-1420.	3.7	12
7	Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli. Scientific Reports, 2018, 8, 2695.	3.3	46
8	Alterations in the Abundance and Co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the Colonic Mucosa of Inflammatory Bowel Disease Subjects. Frontiers in Cellular and Infection Microbiology, 2018, 8, 281.	3.9	135
9	<i>Faecalibacterium prausnitzii</i> : from microbiology to diagnostics and prognostics. ISME Journal, 2017, 11, 841-852.	9.8	510
10	Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: An ecological perspective. Forensic Science International, 2017, 278, 388-395.	2.2	47
11	Dynamics of the oral microbiota as a tool to estimate time since death. Molecular Oral Microbiology, 2017, 32, 511-516.	2.7	52
12	Changes in the Abundance of Faecalibacterium prausnitzii Phylogroups I and II in the Intestinal Mucosa of Inflammatory Bowel Disease and Patients with Colorectal Cancer. Inflammatory Bowel Diseases, 2016, 22, 28-41.	1.9	108
13	Anti-tumour Necrosis Factor Treatment with Adalimumab Induces Changes in the Microbiota of Crohn's Disease. Journal of Crohn's and Colitis, 2015, 9, 899-906.	1.3	59
14	Mucosa-Associated Faecalibacterium prausnitzii Phylotype Richness Is Reduced in Patients with Inflammatory Bowel Disease. Applied and Environmental Microbiology, 2015, 81, 7582-7592.	3.1	89
15	<i>Escherichia coli</i> in chronic inflammatory bowel diseases: An update on adherent invasive <i>Escherichia coli</i> pathogenicity. World Journal of Gastrointestinal Pathophysiology, 2014, 5, 213.	1.0	171
16	Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish Irritable Bowel Syndrome and Inflammatory Bowel Disease phenotypes. International Journal of Medical Microbiology, 2014, 304, 464-475.	3.6	114
17	Cultured Representatives of Two Major Phylogroups of Human Colonic Faecalibacterium prausnitzii Can Utilize Pectin, Uronic Acids, and Host-Derived Substrates for Growth. Applied and Environmental Microbiology, 2012, 78, 420-428.	3.1	341
18	A New Validated Real-Time PCR-Based Method for the Specific and Fast Detection of Cronobacter spp. in Infant Formula. Food Analytical Methods, 2012, 5, 179-187.	2.6	10

L JESUS GARCIA-GIL

#	Article	IF	CITATIONS
19	A validated simple and rapid method for the simultaneous detection of both Cronobacter spp. and Salmonella spp. for infant formula quality control. Dairy Science and Technology, 2012, 92, 151-166.	2.2	2
20	Multiplex Real-time PCR for the Simultaneous Detection of Salmonella spp. and Listeria monocytogenes in Food Samples. Food Analytical Methods, 2011, 4, 131-138.	2.6	44
21	Adherent-Invasive Escherichia coli Phenotype Displayed by Intestinal Pathogenic E. coli Strains from Cats, Dogs, and Swine. Applied and Environmental Microbiology, 2011, 77, 5813-5817.	3.1	26
22	A New Multiplexed Real-Time PCR Assay to Detect Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis. Food Analytical Methods, 2010, 3, 40-46.	2.6	14
23	Phosphorus deficiency and kinetics of alkaline phosphatase in isolates and natural populations of phototrophic sulphur bacteria. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	6
24	Detection and identification of unknown streptococcal populations in clinical samples. Microbial Ecology in Health and Disease, 2009, 21, 233-240.	3.5	0
25	Lack of Clinical Usefulness of Das-1 Monoclonal Antibody and Mucin Expression as Risk Markers of Gastric Carcinoma in Patients With Gastric Intestinal Metaplasia. American Journal of Clinical Pathology, 2009, 131, 99-105.	0.7	3
26	Similarity and Divergence among Adherent-Invasive <i>Escherichia coli</i> and Extraintestinal Pathogenic <i>E. coli</i> Strains. Journal of Clinical Microbiology, 2009, 47, 3968-3979.	3.9	96
27	Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC). BMC Microbiology, 2009, 9, 202.	3.3	91
28	Molecular diversity of Escherichia coli in the human gut: New ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflammatory Bowel Diseases, 2009, 15, 872-882.	1.9	339
29	Diagnosis and prevalence of enteropathogenic bacteria in children less than 5 years of age with acute diarrhea in Tehran children's hospitals. Journal of Infection, 2009, 58, 21-27.	3.3	73
30	A New Real-Time PCR Assay for the Specific Detection of Salmonella spp. Targeting the bipA Gene. Food Analytical Methods, 2008, 1, 236-242.	2.6	38
31	Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶. Photochemistry and Photobiology, 2007. 72. 669-675.	2.5	3
32	Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflammatory Bowel Diseases, 2006, 12, 1136-1145.	1.9	238
33	Signature pigments of green sulfur bacteria in lower Pleistocene deposits from the Banyoles lacustrine area (Spain). Journal of Paleolimnology, 2005, 34, 271-280.	1.6	21
34	Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions. Applied and Environmental Microbiology, 2005, 71, 940-947.	3.1	121
35	Polygenic analysis of ammonia-oxidizing bacteria using 16S rDNA, amoA, and amoB genes. International Microbiology, 2005, 8, 103-10.	2.4	9
36	Use of the ammonia-oxidizing bacterial-specific phylogenetic probe Nso1225 as a primer for fingerprint analysis of ammonia-oxidizer communities. Applied Microbiology and Biotechnology, 2004, 63, 715-721.	3.6	20

L JESUS GARCIA-GIL

#	Article	IF	CITATIONS
37	Use of amoB as a new molecular marker for ammonia-oxidizing bacteria. Journal of Microbiological Methods, 2004, 57, 69-78.	1.6	22
38	A comparative study of bchG from green photosynthetic bacteria. Archives of Microbiology, 2003, 179, 108-115.	2.2	12
39	Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001. Archives of Microbiology, 2003, 180, 417-426.	2.2	22
40	Excitation energy transfer in chlorosomes of Chlorobium phaeobacteroides strain CL1401: the role of carotenoids. Photosynthesis Research, 2002, 71, 5-18.	2.9	35
41	Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynthesis Research, 2002, 71, 83-90.	2.9	76
42	Previously unknown and phylogenetically diverse members of the green nonsulfur bacteria are indigenous to freshwater lakes. Archives of Microbiology, 2001, 177, 1-10.	2.2	131
43	Effect of carotenoid deficiency on cells and chlorosomes of Chlorobium phaeobacteroides. Archives of Microbiology, 2001, 175, 226-233.	2.2	20
44	Light responses in the green sulfur bacterium Prosthecochloris aestuarii : changes in prosthecae length, ultrastructure, and antenna pigment composition. Archives of Microbiology, 2001, 176, 278-284.	2.2	17
45	Identification of the bacteriochlorophyll homologues of Chlorobium phaeobacteroides strain UdG6053 grown at low light intensity. Photosynthesis Research, 2001, 70, 221-230.	2.9	32
46	Variability of the photosynthetic antenna of a Pelodictyon clathratiforme population from a freshwater holomictic pond. FEMS Microbiology Ecology, 2001, 37, 11-19.	2.7	2
47	Effect of Carotenoid Biosynthesis Inhibition on the Chlorosome Organization in Chlorobium phaeobacteroides Strain CL1401. Photochemistry and Photobiology, 2000, 71, 715-723.	2.5	39
48	Fast energy transfer between BChl d and BChl c in chlorosomes of the green sulfur bacterium Chlorobium limicola. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1457, 71-80.	1.0	24
49	Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶. Photochemistry and Photobiology, 2000, 72, 669.	2.5	24
50	Title is missing!. Photosynthesis Research, 1999, 59, 231-241.	2.9	17
51	Title is missing!. Photosynthesis Research, 1999, 60, 257-264.	2.9	62
52	Growth-rate-dependent bacteriochlorophyll c / d ratio in the antenna of Chlorobium limicola strain UdG6040. Archives of Microbiology, 1999, 171, 350-354.	2.2	15
53	Occurrence of new bacteriochlorophyll d forms in natural populations of green photosynthetic sulfur bacteria. FEMS Microbiology Ecology, 1998, 26, 257-267.	2.7	30
54	Environmental and physiological factors affecting the uptake of phosphate by Chlorobium limicola. Archives of Microbiology, 1998, 170, 252-258.	2.2	4

L JESUS GARCIA-GIL

#	Article	IF	CITATIONS
55	Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynthesis Research, 1995, 45, 21-30.	2.9	87
56	Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynthesis Research, 1994, 41, 157-164.	2.9	99
57	New Fecal Bacterial Signature for Colorectal Cancer Screening Reduces the Fecal Immunochemical Test False-Positive Rate in a Screening Population. SSRN Electronic Journal, 0, , .	0.4	1