
Sadia Kabir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820361/publications.pdf Version: 2024-02-01

SADIA KARID

#	Article	IF	CITATIONS
1	Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 24433-24443.	5.2	161
2	Binding energy shifts for nitrogenâ€containing grapheneâ€based electrocatalysts – experiments and DFT calculations. Surface and Interface Analysis, 2016, 48, 293-300.	0.8	147
3	Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochimica Acta, 2017, 231, 115-124.	2.6	131
4	Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. Journal of Power Sources, 2017, 356, 371-380.	4.0	108
5	Role of Nitrogen Moieties in N-Doped 3D-Graphene Nanosheets for Oxygen Electroreduction in Acidic and Alkaline Media. ACS Applied Materials & Interfaces, 2018, 10, 11623-11632.	4.0	104
6	Impact of Catalyst Ink Dispersing Methodology on Fuel Cell Performance Using in-Situ X-ray Scattering. ACS Applied Energy Materials, 2019, 2, 6417-6427.	2.5	104
7	Computational and experimental evidence for a new TM–N ₃ /C moiety family in non-PGM electrocatalysts. Physical Chemistry Chemical Physics, 2015, 17, 17785-17789.	1.3	98
8	Elucidating the Dynamic Nature of Fuel Cell Electrodes as a Function of Conditioning: An ex Situ Material Characterization and in Situ Electrochemical Diagnostic Study. ACS Applied Materials & Interfaces, 2019, 11, 45016-45030.	4.0	96
9	Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochimica Acta, 2018, 265, 56-64.	2.6	79
10	Improving the bulk gas transport of Fe-N-C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications. Nano Energy, 2020, 73, 104791.	8.2	47
11	High-Performance Bipolar Membrane Development for Improved Water Dissociation. ACS Applied Polymer Materials, 2020, 2, 4559-4569.	2.0	45
12	Nitrogen-Doped Three-Dimensional Graphene-Supported Palladium Nanocomposites: High-Performance Cathode Catalysts for Oxygen Reduction Reactions. ACS Catalysis, 2017, 7, 6609-6618.	5.5	43
13	Palladium Supported on 3D Graphene as an Active Catalyst for Alcohols Electrooxidation. Journal of the Electrochemical Society, 2015, 162, F1305-F1309.	1.3	41
14	Design of Novel Graphene Materials as a Support for Palladium Nanoparticles: Highly Active Catalysts towards Ethanol Electrooxidation. Electrochimica Acta, 2016, 203, 144-153.	2.6	40
15	Co-generation of hydrogen and power/current pulses from supercapacitive MFCs using novel HER iron-based catalysts. Electrochimica Acta, 2016, 220, 672-682.	2.6	31
16	3D-Graphene supports for palladium nanoparticles: Effect of micro/macropores on oxygen electroreduction in Anion Exchange Membrane Fuel Cells. Journal of Power Sources, 2018, 375, 255-264.	4.0	30
17	Stability of carbon-supported palladium nanoparticles in alkaline media: A case study of graphitized and more amorphous supports. Electrochemistry Communications, 2017, 78, 33-37.	2.3	24
18	Toward Optimizing Electrospun Nanofiber Fuel Cell Catalyst Layers: Microstructure and Pt Accessibility. ACS Applied Energy Materials, 2021, 4, 3341-3351.	2.5	21

SADIA KABIR

#	Article	IF	CITATIONS
19	Palladium Nanoparticles Supported on Threeâ€Dimensional Graphene Nanosheets: Superior Cathode Electrocatalysts. ChemElectroChem, 2016, 3, 1655-1666.	1.7	16
20	Toward Optimizing Electrospun Nanofiber Fuel Cell Catalyst Layers: Polymer–Particle Interactions and Spinnability. ACS Applied Polymer Materials, 2021, 3, 2374-2384.	2.0	16
21	X-ray photoelectron spectroscopy and rotating disk electrode measurements of smooth sputtered Fe-N-C films. Applied Surface Science, 2020, 515, 146012.	3.1	11
22	Palladium Nanoparticles Supported on 3D-Graphene Nanosheets for Oxygen Reduction Reactions in Alkaline Media. ECS Transactions, 2016, 72, 39-47.	0.3	5
23	Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mnâ€Nâ€3Dâ€Graphene Nanosheets. ChemElectroChem, 2017, 4, 2336-2344.	1.7	5
24	Anodic materials for electrooxidation of alcohols in alkaline media. SPR Electrochemistry, 2017, , 61-101.	0.7	4
25	(Invited) Linking Ionomer/Electrocatalyst Interactions to Membrane Electrode Assembly Performance and Durability in Proton Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1047-1047.	0.0	0
26	(Invited) Advancements in Alkaline Water Electrolysis: The Future of Clean Hydrogen Production. ECS Meeting Abstracts, 2021, MA2021-02, 1233-1233.	0.0	0
27	Importance of Local Ionomer Distribution in the Cathode Catalyst Layer and Its Impact on Polymer Electrolyte Fuel Cell Performance. ECS Meeting Abstracts, 2021, MA2021-02, 1063-1063.	0.0	0