Wei Gao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4820022/wei-gao-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

293 5,991 41 64 g-index

307 6,797 3.8 6.13 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
293	Co-deposition of Ag and Co3O4 on black TiO2-x nanotubes with enhanced photocatalytic activity under visible light irradiation. <i>Journal of Materials Science</i> , 2022 , 57, 2455-2466	4.3	O
292	Accurately localizing multiple nanoparticles in a multishelled matrix through shell-to-core evolution for maximizing energy storage capability <i>Advanced Materials</i> , 2022 , e2200206	24	5
291	Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. <i>Applied Surface Science</i> , 2022 , 586, 152836	6.7	4
290	Nitrogen-doped carbon hollow spheres packed with multiple nano Sn particles for enhanced lithium storage. <i>Chemical Engineering Journal</i> , 2022 , 136768	14.7	O
289	Sequential absorption and shell-to-core evolution to encapsulate Sn particles in hollow TiO2-x spheres for enhanced lithium storage. <i>Applied Surface Science</i> , 2022 , 153631	6.7	
288	MOF-derived formation of ultrafine FeP nanoparticles confined by N/P Co-doped carbon as an efficient and stable electrocatalyst for hydrogen evolution reaction. <i>Applied Surface Science</i> , 2022 , 1536	i627	O
287	Yolk-shelled SnO2@NxC spheres with controllable void space as high-capacity and cycle-stable anode materials for Lithium-ion batteries. <i>Materials and Design</i> , 2022 , 110745	8.1	O
286	Accurately tailoring yolk-shell spheres to balance cycling stability and volumetric capacity of lithium storage. <i>Journal of Alloys and Compounds</i> , 2022 , 917, 165548	5.7	O
285	Achieving High Loading Inhibitor Carriers with pH-Response for Active Corrosion Protection using Attapulgite. <i>Materials Today Nano</i> , 2022 , 100228	9.7	O
284	Immobilized ZnO based nanostructures and their environmental applications. <i>Progress in Natural Science: Materials International</i> , 2021 , 31, 821-821	3.6	O
283	Phase control and stabilization of 1T-MoS2 via black TiO2\(\mathbb{N}\) nanotube arrays supporting for electrocatalytic hydrogen evolution. <i>Journal of Energy Chemistry</i> , 2021 , 68, 71-71	12	3
282	Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery. Journal of Magnesium and Alloys, 2021 ,	8.8	5
281	LIPSS-Sticks: Laser Induced Double Self Organization Enhances the Broadband Light Absorption of TiO2 Nanotube Arrays. <i>Advanced Photonics Research</i> , 2021 , 2, 2000133	1.9	2
280	Polymer-based TiO2 nanocomposite membrane: synthesis and organic pollutant removal. <i>International Journal of Smart and Nano Materials</i> , 2021 , 12, 129-145	3.6	6
279	Hypoeutectic Mg Z n binary alloys as anode materials for magnesium-air batteries. <i>Journal of Alloys and Compounds</i> , 2021 , 857, 157579	5.7	11
278	Corrosion fatigue crack propagation behavior of A7N01P-T4 aluminum alloy welded joints from high-speed train underframe after 1.8 million km operation. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2021 , 72, 879-887	1.6	1
277	Influence of chitosan modification on self-assembly behavior of Fe3O4 nanoparticles. <i>Applied Nanoscience (Switzerland)</i> , 2021 , 11, 21-27	3.3	3

276	Tunable-spectrum Mn2+ doped garnet transparent ceramics for high-color rendering laser lighting. <i>International Journal of Applied Ceramic Technology</i> , 2021 , 18, 716-723	2	O
275	A high-performance Cu-doped vanadium pentoxide thin-film cathode for lithium-ion batteries. <i>Jonics</i> , 2021 , 27, 2335-2344	2.7	4
274	Synthesis of bimetallic MoS2/VS2 nano-urchins-reduced graphene oxide hybrid nanocomposite for high performance supercapacitor application. <i>Electrochimica Acta</i> , 2021 , 398, 139300	6.7	3
273	Biological Pretreatment by Solid-State Fermentation of Oat Straw to Enhance Physical Quality of Pellets. <i>Journal of Chemistry</i> , 2020 , 2020, 1-13	2.3	4
272	CuBnIn nanocomposite coatings prepared by TiO2 sol-enhanced electrodeposition. <i>Journal of Applied Electrochemistry</i> , 2020 , 50, 875-885	2.6	3
271	Synthesis of free standing TiO2 nanostructures (FSTNS) via hydrothermal process for organic photocatalytic degradation 2020 ,		1
270	Experimental study on freezing and thawing deformation of geogrid-reinforced silty clay structure. Bulletin of Engineering Geology and the Environment, 2020 , 79, 2883-2892	4	1
269	Research on Thermal Insulation Properties of Plant Fiber Composite Building Material: A Review. <i>International Journal of Thermophysics</i> , 2020 , 41, 1	2.1	3
268	Stress corrosion property of 304 stainless steel and Q345 steel laser-MAG hybrid welded joints. <i>International Journal of Modern Physics B</i> , 2020 , 34, 2040057	1.1	1
267	Surface modification of TiO2 for visible light photocatalysis: Experimental and theoretical calculations of its electronic and optical properties. <i>International Journal of Modern Physics B</i> , 2020 , 34, 2040067	1.1	5
266	Pulse gas-assisted multi-needle electrospinning of nanofibers. <i>Advanced Composites and Hybrid Materials</i> , 2020 , 3, 98-113	8.7	12
265	Temperature and doping content independence of lifetime in Li2MgSiO4:Eu3+ phosphor. <i>International Journal of Modern Physics B</i> , 2020 , 34, 2040014	1.1	O
264	Wearable Flexible Strain Sensor Based on Three-Dimensional Wavy Laser-Induced Graphene and Silicone Rubber. <i>Sensors</i> , 2020 , 20,	3.8	18
263	Photoluminescent transparent ceramics with an adjustable spectrum for high-color rendering laser lighting. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16483-16488	7.1	6
262	A hybrid composite of rGO/TiO2 as a double layer electrode with improved capacitance performance. <i>International Journal of Energy Research</i> , 2020 , 44, 12197-12203	4.5	5
261	A high-performance graphene based asymmetric supercapacitor. <i>International Journal of Modern Physics B</i> , 2020 , 34, 2040007	1.1	2
260	Synthesis, growth mechanism and effect of sputtering pressure on 3D ZnO nanostructures with trunk-branch nanorods. <i>Functional Materials Letters</i> , 2019 , 12, 1940003	1.2	1
259	Microstructure and Properties of Duplex Ni-P-TiO2/Ni-P Nanocomposite Coatings. <i>Materials Research</i> , 2019 , 22,	1.5	7

258	Development and Properties of Polymeric Nanocomposite Coatings. <i>Polymers</i> , 2019 , 11,	4.5	22
257	Formation of copper hydroxyl sulfates in CuSO4 solution by NaOH titration. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1940059	1.1	1
256	Fabrication of flower-like TiO2 on Bucky paper with enhanced photocatalytic activity. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1950017	1.1	4
255	Microstructure and properties of sol-enhanced Co-P-TiO2 nano-composite coatings. <i>Journal of Alloys and Compounds</i> , 2019 , 792, 617-625	5.7	21
254	Influence of temperature and pH value on deposition rate and corrosion resistance of NiZnP alloy coating. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1940013	1.1	3
253	Hierarchical structures of coated TiO2 nanoribbons with photodegradation and sedimentation properties. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1940022	1.1	4
252	Preparation of Ag-decorated TiO2 nanotube electrode and its catalytic property. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1940023	1.1	1
251	Preparation and properties of duplex NI-P-TIO2/NI nanocomposite coatings. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1940019	1.1	2
250	Study of residual stresses in A7N01 aluminum alloy with X-ray diffraction Debye ring analysis. <i>International Journal of Modern Physics B</i> , 2019 , 33, 1940032	1.1	4
249	Factors effecting the freeze thaw process in soils and reduction in damage due to frosting with reinforcement: a review. <i>Bulletin of Engineering Geology and the Environment</i> , 2019 , 78, 5001-5010	4	10
248	Enhancing photocatalytic activities of titanium dioxide via well-dispersed copper nanoparticles. <i>Chemosphere</i> , 2018 , 204, 193-201	8.4	25
247	Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 178, 273-279	6.4	90
246	Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. <i>Journal of Thermal Analysis and Calorimetry</i> , 2018 , 132, 1753-1761	4.1	25
245	Synthesis, characterization and photocatalytic property of novel ZnO/bone char composite. <i>Materials Research Bulletin</i> , 2018 , 102, 45-50	5.1	27
244	Magnetic carbon nanotubes for self-regulating temperature hyperthermia RSC Advances, 2018, 8, 119	93 ./ 120	0030
243	Influence of Bi addition on the property of Ag-Bi nano-composite coatings. <i>Surface and Coatings Technology</i> , 2018 , 349, 217-223	4.4	9
242	Enhanced visible light photodegradation activity of RhB/MB from aqueous solution using nanosized novel Fe-Cd co-modified ZnO. <i>Scientific Reports</i> , 2018 , 8, 10691	4.9	77
241	Synthesis and Photocatalytic Performance of ZnO/Bone Char Composite. <i>Materials</i> , 2018 , 11,	3.5	5

240	x-The Effect of Microstructure on the Corrosion Fatigue Property of A7N01P-T4 Aluminum Alloy Welding Joints. <i>Corrosion</i> , 2018 , 74, 1229-1236	1.8	О
239	Removal of Methylene Blue from Aqueous Solution by Bone Char. <i>Applied Sciences (Switzerland)</i> , 2018 , 8, 1903	2.6	29
238	In situ formation of Ag/ZnO heterostructure arrays during synergistic photocatalytic process for SERS and photocatalysis. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2018 , 88, 277-285	5.3	21
237	II14EType Nitrides LnAl(Si4NAlx)N7OWith Unusual [AlN6] Octahedral Coordination. Angewandte Chemie, 2017 , 129, 3944-3949	3.6	
236	"114"-Type Nitrides LnAl(Si Al)N O with Unusual [AlN] Octahedral Coordination. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3886-3891	16.4	1
235	Ultrafast laser patterning and defect generation in titania nanotubes for the enhancement of optical and photocatalytic properties 2017 ,		1
234	Effects of Pb addition on microstructures and elemental distribution of AS-CAST AZ61 Mg alloy. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744002	1.1	
233	InnenrEktitelbild: [114EType Nitrides LnAl(Si4NAlx)N7OEwith Unusual [AlN6] Octahedral Coordination (Angew. Chem. 14/2017). <i>Angewandte Chemie</i> , 2017 , 129, 4125-4125	3.6	
232	Decoration of ZnO nanorod arrays by Cu nanocrystals via magnetron sputtering. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744050	1.1	
231	TiO2 used as photocatalyst for rhodamine B degradation under solar radiation. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744095	1.1	9
230	Effects of La2O3 on the microstructure and tribological properties of plasma-sprayed Cr2O3IIiO2 coatings. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744033	1.1	1
229	Microstructure and properties of TiO2 sol-enhanced black nickel nanocomposite coating. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744023	1.1	2
228	Selective separation and recovery of silver and copper from mixtures by photocatalysis. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744096	1.1	
227	Adsorption behavior of methylene blue by bone char. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744099	1.1	8
226	Enhanced photocatalytic performance of ZnO/bone char composites. <i>Materials Letters</i> , 2017 , 205, 233-	235	16
225	Effects of TiO2 sol on the microstructure and properties of Auto coatings. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744028	1.1	
224	Probing the specificity of polyurethane foam as a 'solid-phase extractant': Extractability-governing molecular attributes of lipophilic phenolic compounds. <i>Talanta</i> , 2017 , 172, 186-198	6.2	9
223	Preparation of broadband absorption ceramic coatings by using plasma electrolytic deposition. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744082	1.1	

222	Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties. <i>Surface and Coatings Technology</i> , 2017 , 310, 43-50	4.4	30
221	Microstructure and enhanced photoluminescence of ZnO/V2O5 composite. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744051	1.1	
220	Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings. <i>Materials</i> , 2017 , 10,	3.5	10
219	NaBH4 modified TiO2: Defect site enhancement related to its photocatalytic activity. <i>Materials Chemistry and Physics</i> , 2017 , 199, 571-576	4.4	52
218	GROWTH BEHAVIOR OF INTERMETALLIC LAYER ON STAINLESS STEEL IN ALUMINUM HOT-DIPPING PROCESS. <i>Surface Review and Letters</i> , 2017 , 24, 1750046	1.1	4
217	Synthesis of magnetic biochar from pine sawdust via oxidative hydrolysis of FeCl for the removal sulfamethoxazole from aqueous solution. <i>Journal of Hazardous Materials</i> , 2017 , 321, 868-878	12.8	166
216	A new, bright and hard aluminum surface produced by anodization. <i>International Journal of Modern Physics B</i> , 2017 , 31, 1744029	1.1	
215	Effect of Mg content on microstructure and corrosion behavior of hot dipped ZnAlMg coatings. Journal of Alloys and Compounds, 2016 , 670, 239-248	5.7	38
214	Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. <i>RSC Advances</i> , 2016 , 6, 72968-72974	3.7	13
213	Mechanical properties and microstructure of AuNilliO2 nano-composite coatings. <i>Materials Characterization</i> , 2015 , 102, 189-194	3.9	28
212	Effects of Mg content on microstructure and electrochemical properties of ZnAlMg alloys. <i>Journal of Alloys and Compounds</i> , 2015 , 645, 131-136	5.7	22
211	Effect of doping Gd3+ on crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor. Journal of Rare Earths, 2015 , 33, 693-699	3.7	15
210	Electrochemical studies of sol-enhanced ZnNiAl2O3 composite and ZnNi alloy coatings. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 755, 63-70	4.1	22
209	Effects of bismuth addition and electrodeposition processing on Zn-based coatings. <i>International Journal of Modern Physics B</i> , 2015 , 29, 1540010	1.1	1
208	Recovery of silver metal from low concentrated wastewater by photocatalysis. <i>International Journal of Modern Physics B</i> , 2015 , 29, 1540028	1.1	3
207	Microstructure and properties of Nitolio2 composite coatings fabricated by electroplating. International Journal of Modern Physics B, 2015, 29, 1540008	1.1	6
206	Microstructure and properties of sol-enhanced Ni-Co-TiO2 nano-composite coatings on mild steel. <i>Journal of Alloys and Compounds</i> , 2015 , 649, 222-228	5.7	47
205	ZnNiAl2O3 nano-composite coatings prepared by sol-enhanced electroplating. <i>Applied Surface Science</i> , 2015 , 351, 869-879	6.7	18

(2015-2015)

204	Microwave-Assisted Synthesis of High Dielectric Constant CaCu3Ti4O12 from Sol © el Precursor. Journal of Electronic Materials, 2015 , 44, 2243-2249	1.9	11
203	The effect of pulse electroplating on ZnNi alloy and ZnNiAl2O3 composite coatings. <i>Journal of Alloys and Compounds</i> , 2015 , 622, 918-924	5.7	33
202	Consumer-grade polyurethane foam functions as a large and selective absorption sink for bisphenol A in aqueous media. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8870-8881	13	12
201	Preparation and property of duplex NiBIIiO2/Ni nano-composite coatings. <i>International Journal of Modern Physics B</i> , 2015 , 29, 1540022	1.1	8
200	Influence of Al2O3 sol concentration on the microstructure and mechanical properties of CuAl2O3 composite coatings. <i>International Journal of Modern Physics B</i> , 2015 , 29, 1540021	1.1	2
199	Crystal structure development of vanadium oxide thin films deposited by a magnetron sputtering technique. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2015 , 33, 041802	1.3	1
198	Improving dielectric properties and thermal conductivity of polymer composites with CaCu3Ti4O12 and EsiC hybrid fillers. <i>Functional Materials Letters</i> , 2015 , 08, 1540011	1.2	3
197	Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones. <i>Materials Characterization</i> , 2015 , 109, 73-78	3.9	15
196	Enhanced extrinsic dielectric response of TiO2 modified CaCu3Ti4O12 ceramics. <i>Ceramics International</i> , 2015 , 41, 13447-13454	5.1	34
195	Design and modeling of a continuously variable piezoelectric RF MEMS switch. <i>Microsystem Technologies</i> , 2015 , 21, 1293-1300	1.7	6
194	How voltage dictates anodic TiO 2 formation. <i>Scripta Materialia</i> , 2015 , 94, 32-35	5.6	9
193	Trace phase formation, crystallization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique. <i>Scientific Reports</i> , 2015 , 5, 9159	4.9	22
192	CaCu3Ti4O12 B VDF polymeric composites with enhanced capacitive energy density. <i>International Journal of Modern Physics B</i> , 2015 , 29, 1540003	1.1	3
191	Sorption of 17Eestradiol from aqueous solutions on to bone char derived from waste cattle bones: Kinetics and isotherms. <i>Journal of Environmental Chemical Engineering</i> , 2015 , 3, 1562-1569	6.8	29
190	A multi-layered polydimethylsiloxane structure for application in low-excitation, broadband and low frequency energy harvesting. <i>Sensors and Actuators A: Physical</i> , 2015 , 222, 140-148	3.9	8
189	Double-layered Ni-P/Ni-P-ZrO2 electroless coatings on AZ31 magnesium alloy with improved corrosion resistance. <i>Surface and Coatings Technology</i> , 2015 , 261, 161-166	4.4	51
188	Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. <i>Journal of Alloys and Compounds</i> , 2015 , 629, 84-91	5.7	36
187	A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. <i>Science of the Total Environment</i> , 2015 , 512-513, 495-505	10.2	123

186	Properties of Zn B i composite coatings prepared by ionic co-discharge deposition. <i>Transactions of Nonferrous Metals Society of China</i> , 2015 , 25, 199-205	3.3	1
185	Ag/ZnO heterostructures and their photocatalytic activity under visible light: effect of reducing medium. <i>Journal of Hazardous Materials</i> , 2015 , 287, 59-68	12.8	108
184	Partially crystallized TiO2 for microwave absorption. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 5285-52	2883	68
183	Duplex NiPIIrO2/NiP electroless coating on stainless steel. <i>Journal of Alloys and Compounds</i> , 2015 , 630, 189-194	5.7	43
182	A study on corrosion behaviour of magnetron sputtered ZnMg coating deposited onto electro-galvanized steel. <i>Surface and Coatings Technology</i> , 2014 , 249, 90-96	4.4	5
181	Superhydrophobic surface of TiO2 hierarchical nanostructures fabricated by Ti anodization. <i>Journal of Colloid and Interface Science</i> , 2014 , 420, 97-100	9.3	21
180	Polymer antimicrobial coatings with embedded fine Cu and Cu salt particles. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 6265-74	5.7	21
179	Synthesis and properties of electrodeposited Ni B CeO2 composite coatings. <i>Materials & Design</i> , 2014 , 59, 421-429		69
178	Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating. <i>Applied Surface Science</i> , 2014 , 290, 274-279	6.7	47
177	TiO2/ZnO nanocomposite, ZnO/ZnO bi-level nanostructure and ZnO nanorod arrays: microstructure and time-affected wettability change in ambient conditions. <i>RSC Advances</i> , 2014 , 4, 30658-30665	3.7	9
176	Double-layer iridium luminum intermetallic coating on iridium/rhenium coated graphite prepared by pack cementation. <i>Surface and Coatings Technology</i> , 2014 , 258, 524-530	4.4	16
175	Preparation and property of sol-enhanced Ni B TiO 2 nano-composite coatings. <i>Journal of Alloys and Compounds</i> , 2014 , 617, 472-478	5.7	50
174	Structural Response of Lithium Disilicate in Glass Crystallization. <i>Crystal Growth and Design</i> , 2014 , 14, 5144-5151	3.5	19
173	Properties of electrodeposited Ni BA l2O3 composite coatings. <i>Materials & Design</i> , 2014 , 64, 127-135		59
172	Long-term high-temperature oxidation of iridium coated rhenium by electrical resistance heating method. <i>International Journal of Refractory Metals and Hard Materials</i> , 2014 , 44, 42-48	4.1	17
171	Investigation of phase evolution of CaCu3Ti4O12 (CCTO) by in situ synchrotron high-temperature powder diffraction. <i>Journal of Solid State Chemistry</i> , 2014 , 211, 58-62	3.3	19
170	Au-Ni-TiO2Nano-Composite Coatings Prepared by Sol-Enhanced Method. <i>Journal of the Electrochemical Society</i> , 2014 , 161, D775-D781	3.9	12
169	Effects of Mg on microstructure and corrosion properties of ZnMg alloy. <i>Journal of Alloys and Compounds</i> , 2014 , 602, 101-107	5.7	90

(2013-2014)

168	Anodization of NiTi alloy in an ethylene glycol electrolyte. <i>Surface and Coatings Technology</i> , 2014 , 252, 142-147	4.4	13
167	Defective black TiOTiOI ynthesized via anodization for visible-light photocatalysis. <i>ACS Applied Materials & Defective Materials & </i>	9.5	180
166	A near-ultraviolet (NUV) converting green-yellow Ca2AlMg0.5Si1.5O7:Eu2+ phosphor for white light-emitting-diodes (w-LEDs). <i>Chemical Engineering Journal</i> , 2014 , 254, 486-490	14.7	20
165	Electrodeposition of single gamma phased ZnNi alloy coatings from additive-free acidic bath. <i>Applied Surface Science</i> , 2014 , 311, 635-642	6.7	58
164	Physicochemical Characterization of Electrosynthesized PbO2Coatings: The Effect of Pb2+Concentration and Current Density. <i>Journal of the Electrochemical Society</i> , 2014 , 161, D327-D332	3.9	9
163	Photodegradation of Endocrine Disrupting Chemicals by ZnO Nanorod Arrays. <i>Molecular Crystals and Liquid Crystals</i> , 2014 , 603, 194-201	0.5	4
162	Effects of Mg on morphologies and properties of hot dipped ZnMg coatings. <i>Surface and Coatings Technology</i> , 2014 , 260, 39-45	4.4	11
161	Ni B i composite coatings produced by ionic co-discharge electrodeposition. <i>Surface and Coatings Technology</i> , 2014 , 260, 279-283	4.4	4
160	Orthogonal experimental design of polydimethylsiloxane curing for the design of low-frequency vibrational energy harvester. <i>Journal of Intelligent Material Systems and Structures</i> , 2014 , 25, 2228-2234	2.3	6
159	Effects of Pb/Sn additions on the age-hardening behaviour of MgBZn alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2014 , 597, 52-61	5-3	14
158	Zn3(VO4)2 prepared by magnetron sputtering: microstructure and optical property. <i>Applied Nanoscience (Switzerland)</i> , 2013 , 3, 535-542	3.3	13
157	Nucleation and Crystallization Kinetics of a Multicomponent Lithium Disilicate Glass by in Situ and Real-Time Synchrotron X-ray Diffraction. <i>Crystal Growth and Design</i> , 2013 , 13, 4031-4038	3.5	34
156	Adsorption of ethinylestradiol (EE2) on polyamide 612: molecular modeling and effects of water chemistry. <i>Water Research</i> , 2013 , 47, 2273-84	12.5	58
155	Microstructure, growth process and enhanced photocatalytic activity of immobilized hierarchical ZnO nanostructures. <i>RSC Advances</i> , 2013 , 3, 21666	3.7	22
154	Physicochemical characterisation of electrosynthesized lead dioxide coatings on Ti/SnO2-Sb substrates. <i>Electrochimica Acta</i> , 2013 , 113, 446-453	6.7	17
153	In situ high-temperature crystallographic evolution of a nonstoichiometric Li2OI2SiO2 glass. <i>Inorganic Chemistry</i> , 2013 , 52, 14188-95	5.1	17
152	Effects of Sn addition on the microstructure and mechanical properties of as-cast, rolled and annealed MgBZn alloys. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2013 , 585, 139-148	5.3	45
151	A porous (La, Sm) co-doped Sialon-polytypoid ceramic with colour and structure differences in multilayers. <i>CrystEngComm</i> , 2013 , 15, 8552	3.3	5

Negative differential resistance of a metallhsulator thetal device with gold nanoparticles

Electro-codeposition of Al2O3M2O3 composite thin film coatings and their high-temperature

embedded in polydimethylsiloxane. Solid State Communications, 2012, 152, 835-838

oxidation resistance on ETiAl alloy. Thin Solid Films, 2012, 520, 2060-2065

1.6

2.2

12

15

134

133

132	Synthesis of ZnO submicron spheres by a two-stage solution method. <i>Applied Nanoscience</i> (Switzerland), 2012 , 2, 63-70	3.3	8
131	Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. <i>Chemical Engineering Journal</i> , 2012 , 213, 150-162	14.7	89
130	Removal of ethinylestradiol (EE2) from water via adsorption on aliphatic polyamides. <i>Water Research</i> , 2012 , 46, 5715-5724	12.5	31
129	Thermally driven V2O5 nanocrystal formation and the temperature-dependent electronic structure study. <i>CrystEngComm</i> , 2012 , 14, 626-631	3.3	13
128	Chemisorption of estrone in nylon microfiltration membranes: Adsorption mechanism and potential use for estrone removal from water. <i>Water Research</i> , 2012 , 46, 873-81	12.5	33
127	Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays. <i>Applied Surface Science</i> , 2012 , 263, 389-396	6.7	40
126	ZnO/TiO2 coreBrush nanostructure: processing, microstructure and enhanced photocatalytic activity. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5629		98
125	Synthesis of Zn B i nano-composite coatings by an ionic co-discharge process. <i>Chemical Engineering Journal</i> , 2012 , 192, 242-245	14.7	7
124	ELECTROCHEMICAL BEHAVIOURS OF Mg-4Zn-3Sn CAST ALLOY MODIFIED BY TI ION IMPLANTATION. <i>International Journal of Modern Physics Conference Series</i> , 2012 , 06, 700-704	0.7	
123	High-temperature Oxidation Resistance of Al2O3-Au Laminated Composite Coating Prepared on TiAl-based Alloy. <i>High Temperature Materials and Processes</i> , 2012 , 31,	0.9	2
122	DEGRADATION BEHAVIOR OF A BIODEGRADABLE Fe-Mn ALLOY PRODUCED BY POWDER SINTERING. International Journal of Modern Physics Conference Series, 2012 , 06, 774-779	0.7	1
121	Thermal stability and tensile properties of sol-enhanced nanostructured NiIIiO2 composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 1627-1634	8.4	15
120	Microstructure and optical properties of Ag-doped ZnO nanostructures prepared by a wet oxidation doping process. <i>Nanotechnology</i> , 2011 , 22, 105706	3.4	38
119	Conversion process of ZnO nano-/micro-rods into nano-/micro-tubes and cathodoluminescence characterization. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 3711-5	1.3	
118	Zinc oxide nanostructures and porous films produced by oxidation of zinc precursors in wet-oxygen atmosphere. <i>Progress in Natural Science: Materials International</i> , 2011 , 21, 81-96	3.6	17
117	Microstructures and properties of sol-enhanced nanostructured metal-oxide composite coatings. <i>Progress in Natural Science: Materials International</i> , 2011 , 21, 355-362	3.6	10
116	Castability of Cu54Ni6Zr22Ti18 bulk amorphous alloy. <i>Metals and Materials International</i> , 2011 , 17, 857	-863	7
115	Fabrication and characterization of electroless NiPZrO2 nano-composite coatings. <i>Applied Nanoscience (Switzerland)</i> , 2011 , 1, 19-26	3.3	35

114	Photocatalytic activities of wet oxidation synthesized ZnO and ZnOIIiO2 thick porous films. <i>Applied Nanoscience (Switzerland)</i> , 2011 , 1, 37-44	3.3	9
113	Nanocrystalline/nanoporous ZnO spheres, hexapods and disks transformed from zinc fluorohydroxide, their self-assembly and patterned growth. <i>CrystEngComm</i> , 2011 , 13, 4741	3.3	16
112	Growth mechanism of ZnO nanostructures in wet-oxidation process. <i>Thin Solid Films</i> , 2011 , 519, 1837-18	8 4.4	29
111	Light Emission from a Si Based ZnO Structure. <i>Advanced Materials Research</i> , 2011 , 275, 89-92	0.5	1
110	Positron Annihilation Spectroscopy Investigation of Hot-Extruded Al-20Si-0.35RE Alloy. <i>Materials Science Forum</i> , 2011 , 689, 400-406	0.4	0
109	Effect of Pb and Sn Additions on the Ductility of Cast AZ61 Mg Alloy. <i>Advanced Materials Research</i> , 2011 , 275, 214-217	0.5	2
108	Nanoindentation of Individual ZnO Nano-/Micro-Rod. <i>Advanced Materials Research</i> , 2011 , 275, 147-150	0.5	
107	Fiber-reinforced Yttria Partially Stabilized Zirconia Thermal Barrier Coatings Processed by Sol-gel Method. <i>High Temperature Materials and Processes</i> , 2011 , 30,	0.9	4
106	Influence of Oxygen in Sputtering and Annealing Processes on Properties of ZnO:Ag Films Deposited by rf Sputtering. <i>Chinese Physics Letters</i> , 2011 , 28, 036105	1.8	2
105	Microstructural Evolution in Various Regions of Stir Zone during Friction Stir Processing of Al-7Si-0.3Mg Cast Alloy. <i>Materials Science Forum</i> , 2010 , 654-656, 962-965	0.4	4
104	Al diffusion coating on Mg alloy by a surface nanocrystallization enhanced CVD process. <i>International Journal of Smart and Nano Materials</i> , 2010 , 1, 288-293	3.6	5
103	Implementation of ZnO Nanorods as Sensing Elements for a Surface Acoustic Wave Sensor. Materials Science Forum, 2010 , 663-665, 563-567	0.4	3
102	NOVEL SOL-GEL METHODS FOR PREPARATION OF CERAMIC-OXIDE COATINS. <i>International Journal of Modern Physics B</i> , 2010 , 24, 2983-2991	1.1	3
101	GRAIN BOUNDARY WETTING AND SOLIDIFICATION OF CONSTITUTIONAL LIQUID IN AZ91 MG CAST ALLOY. <i>International Journal of Modern Physics B</i> , 2010 , 24, 2249-2254	1.1	1
100	Synthesis of Nanostructured NiTiO[sub 2] Composite Coatings by Sol-Enhanced Electroplating. Journal of the Electrochemical Society, 2010 , 157, E122	3.9	33
99	Renucleation and Sequential Growth of ZnO Complex Nano/Microstructure: From Nano/Microrod to Ball-Shaped Cluster. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1436-1443	3.8	25
98	Effect of cooling conditions during casting on fraction of EMg17Al12 in MgBAllIZn cast alloy. Journal of Alloys and Compounds, 2010 , 501, 291-296	5.7	24
97	Effects of strontium on microstructure and mechanical properties of as-cast MgBwt.%Sn alloy. Journal of Alloys and Compounds, 2010 , 504, 345-350	5.7	51

(2008-2010)

96	Sol-enhanced electroplating of nanostructured NilliO2 composite coatings he effects of sol concentration on the mechanical and corrosion properties. <i>Electrochimica Acta</i> , 2010 , 55, 6865-6871	6.7	66
95	Dissolution of Eutectic EMg17Al12 Phase in Magnesium AZ91 Cast Alloy at Temperatures Close to Eutectic Temperature. <i>Journal of Materials Engineering and Performance</i> , 2010 , 19, 860-867	1.6	28
94	Solgel ZnO in organic transistor-based non-volatile memory. <i>Journal of Materials Science: Materials in Electronics</i> , 2010 , 21, 125-129	2.1	4
93	Sol-enhanced triple-layered Ni PI iiO2 composite coatings. <i>Journal of Sol-Gel Science and Technology</i> , 2010 , 55, 187-190	2.3	14
92	Potential dissolution and photo-dissolution of ZnO thin films. <i>Journal of Hazardous Materials</i> , 2010 , 178, 115-22	12.8	146
91	A novel electroless plating of Ni PI iO2 nano-composite coatings. <i>Surface and Coatings Technology</i> , 2010 , 204, 2493-2498	4.4	144
90	Electrodeposition of sol-enhanced nanostructured Ni-TiO2 composite coatings. <i>Surface and Coatings Technology</i> , 2010 , 204, 2487-2492	4.4	63
89	Adsorption of estrone in microfiltration membrane filters. Chemical Engineering Journal, 2010, 165, 819	-82.6	18
88	Zno nanoporous diskitio2 nanoparticle hybrid film electrode for dye-sensitized solar cells. <i>Functional Materials Letters</i> , 2009 , 02, 27-31	1.2	27
87	Formation of intermetallic compound coating on magnesium AZ91 cast alloy. <i>IOP Conference Series:</i> Materials Science and Engineering, 2009 , 4, 012024	0.4	6
86	Surface Wettability of Nanostructured Zinc Oxide Films. Journal of Electronic Materials, 2009, 38, 601-60	08 .9	33
85	The influence of sintering conditions on the dielectric and piezoelectric properties of PbZrTiOPbMgNbO ceramic tubes. <i>Journal of Alloys and Compounds</i> , 2009 , 470, 465-469	5.7	12
84	Nanostructures of zinc oxide. International Journal of Nanotechnology, 2009 , 6, 245	1.5	21
83	Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy. <i>Materials Characterization</i> , 2008 , 59, 1550-1558	3.9	50
82	Microstructure and mechanical properties of VN/SiO2 nanomultilayers synthesized by reactive sputtering. <i>Materials Letters</i> , 2008 , 62, 1621-1623	3.3	16
81	Reduction of oxide scale on hot-rolled strip steels by carbon monoxide. <i>Materials Letters</i> , 2008 , 62, 3500	033502	25
80	Template Growth of ZnO Nanorods and Microrods with Controllable Densities. <i>Crystal Growth and Design</i> , 2008 , 8, 2406-2410	3.5	83
79	The effect of micro-crystallizing on the oxidation resistance of Cull alloy in air. <i>Materials Science</i> & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 488, 311-317	5.3	3

61

International Journal of Modern Physics B, 2006, 20, 4637-4642

Society of China, **2006**, 16, 647-653

Preparation of aluminide coatings at relatively low temperatures. Transactions of Nonferrous Metals

18

3.3

(2004-2006)

60	Low-temperature processing of FeAl intermetallic coatings assisted by ball milling. <i>Intermetallics</i> , 2006 , 14, 75-81	3.5	80
59	Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy. <i>Materials Science & Microstructure and Processing</i> , 2006 , 416, 246-252	5.3	48
58	Oxidation of two-phase CuBO Cr alloy at low oxygen pressure. <i>Materials Science & Discourse amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2006 , 434, 141-146	5.3	7
57	The effect of substrate on the electroless nickel plating of Mg and Mg alloys. <i>Surface and Coatings Technology</i> , 2006 , 200, 3553-3560	4.4	89
56	Electroless nickel plating on AZ91 Mg alloy substrate. Surface and Coatings Technology, 2006, 200, 5087	-540193	108
55	Cladding inner surface of steel tubes with Al foils by ball attrition and heat treatment. <i>Surface and Coatings Technology</i> , 2006 , 201, 2684-2689	4.4	19
54	Oxidation Resistance of Boiler Steels with Al2O3–Y2O3 Nano- and Micro-Composite Coatings Produced by Sol–Gel Process. <i>Materials Transactions</i> , 2005 , 46, 2089-2092	1.3	20
53	Properties of 310S stainless steel coatings produced by unbalanced magnetron sputter deposition. <i>Materials Characterization</i> , 2005 , 54, 466-472	3.9	2
52	Correlation of microstructure and high temperature oxidation resistance of plasma sprayed NiCrAl, NiCrAlY, and TiAlO composite coatings on TiBAlBV. <i>Metals and Materials International</i> , 2005 , 11, 499-503	3 ^{2.4}	20
51	Nano-Laminated ZrO[sub 2]-Al[sub 2]O[sub 3] Films Prepared by Electrochemical Deposition. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, C89		8
50	Zn-Ceramic Composite Coatings oil Carbon Steel. <i>High Temperature Materials and Processes</i> , 2005 , 24, 205-212	0.9	1
49	Al2O3-Y2O3 Ceramic Coatings Produced by Cathodic Micro- Arc Electrodeposition and Their High Temperature Oxidation Resistance. <i>High Temperature Materials and Processes</i> , 2005 , 24, 85-92	0.9	1
48	Micro-Crystalline Aluminide Coating Deposited on Fe-5Cr-Mo Steel by Vibrating Electro-Pulse Discharge. <i>High Temperature Materials and Processes</i> , 2004 , 23, 43-50	0.9	5
47	EO2-IB Ceramic Coatings Prepared by Cathodic Plasma Electrolytic Deposition. <i>High Temperature Materials and Processes</i> , 2004 , 23, 205-210	0.9	2
46	ZnO thin films produced by magnetron sputtering. <i>Ceramics International</i> , 2004 , 30, 1155-1159	5.1	134
45	Barium strontium titanate (Ba0.7Sr0.3TiO3) ferroelectric films produced by electrophoretic deposition. <i>Current Applied Physics</i> , 2004 , 4, 385-388	2.6	6
44	Molten salt vapour corrosion of TiAlAg intermetallics. Intermetallics, 2004, 12, 539-544	3.5	7
43	The effects of pre-oxidation and thin Y2O3 coating on the selective oxidation of Cr18Ni9Ti steel. <i>Materials Letters</i> , 2004 , 58, 807-812	3.3	20

42	The effect of sintering on the properties of Ba0.7Sr0.3TiO3 ferroelectric films produced by electrophoretic deposition. <i>Materials Letters</i> , 2004 , 58, 1387-1391	3.3	14
41	Near-Net Ceramic Micro-Tubes Fabricated by Electrophoretic Deposition Process. <i>International Journal of Modern Physics B</i> , 2003 , 17, 1147-1151	1.1	8
40	Cathodic micro-arc electrodeposition of yttrium stabilized zirconia (YSZ) coatings on FeCrAl alloy. <i>Science Bulletin</i> , 2003 , 48, 746-750		5
39	Improving oxidation resistance of Ti3Al and TiAl intermetallic compounds with electro-spark deposit coatings. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2003 , 347, 243-252	5.3	23
38	Corrosion behaviour of Ti3Al and Ti3Al at.% Nb intermetallics. <i>Materials Letters</i> , 2003 , 57, 1528-1538	3.3	11
37	Cyclic Oxidation and Hot Corrosion Behaviour of Ti-48Al-2Cr with Aluminide Coatings. <i>High Temperature Materials and Processes</i> , 2002 , 21, 25-34	0.9	6
36	Oxidation of Ti3Al and TiAl Intermetallic Compounds Under Controlled Oxygen Partial Pressures. High Temperature Materials and Processes, 2002 , 21, 35-46	0.9	2
35	Molten Salt Vapour Corrosion of Ti3Al and TiAl Based Intermetallics. <i>High Temperature Materials and Processes</i> , 2002 , 21, 167-176	0.9	3
34	Cathodic Micro-Arc Electrodeposition of Thick Ceramic Coatings. <i>Electrochemical and Solid-State Letters</i> , 2002 , 5, C33		12
33	NANO-CRYSTAL ALLOY AND ALLOY-OXIDE COATINGS AND THEIR HIGH-TEMPERATURE CORROSION PROPERTIES. <i>International Journal of Modern Physics B</i> , 2002 , 16, 128-136	1.1	8
32	Oxidation behavior of Ni3Al and FeAl intermetallics under low oxygen partial pressures. <i>Intermetallics</i> , 2002 , 10, 263-270	3.5	42
31	Oxidation behavior of micro- and nano-crystalline coatings deposited by series double-pole electro-pulse discharge. <i>Materials Letters</i> , 2002 , 56, 85-92	3.3	12
30	Corrosion resistance of ZnAl co-cementation coatings on carbon steels. <i>Materials Letters</i> , 2002 , 56, 554-	-5559	34
29	Hot corrosion behaviour of TiAl based intermetallics. <i>Materials Letters</i> , 2002 , 57, 834-843	3.3	46
28	Luminescence properties of spark-processed GaP. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2001 , 85, 1-5	3.1	9
27	Protection of a Ti3AlNb alloy by electro-spark deposition coating. <i>Scripta Materialia</i> , 2001 , 45, 1099-110	05 .6	34
26	High Temperature Oxidation Resistant Coatings Produced by Electro-Spark Deposition. <i>Materials Science Forum</i> , 2001 , 369-372, 579-586	0.4	16
25	Use of a Solid-State Oxygen Pump to Study Oxidation Kinetics of Cr and Mo. <i>Oxidation of Metals</i> , 2000 , 53, 577-596	1.6	16

(1991-2000)

24	An Ultralow Oxygen Partial Pressure-Controlling System and Its Application to Oxidation Studies. <i>Oxidation of Metals</i> , 2000 , 54, 47-62	1.6	6
23	Effects of Chromium on the Oxidation Performance of FeAlCr Coatings. <i>Oxidation of Metals</i> , 2000 , 54, 189-209	1.6	25
22	Pilling-Bedworth ratio for oxidation of alloys. <i>Materials Research Innovations</i> , 2000 , 3, 231-235	1.9	186
21	Oxidation behaviour of stainless steel&l coatings produced by co-sputtering and reactive sputtering. <i>Materials Letters</i> , 2000 , 46, 53-59	3.3	8
20	Formation of interfacial voids in cast and micro-grained & Ni3Al during high temperature oxidation. <i>Intermetallics</i> , 2000 , 8, 1385-1391	3.5	8
19	Electro-Spark Deposition Coatings for High Temperature Oxidation Resistance. <i>High Temperature Materials and Processes</i> , 2000 , 19, 443-458	0.9	16
18	Improved Oxide Spallation Resistance of Microcrystalline Ni-Cr-Al Coatings. <i>Oxidation of Metals</i> , 1998 , 50, 51-69	1.6	30
17	Oxidation behaviour of sputter-depositedNitrAl micro-crystalline coatings. <i>Acta Materialia</i> , 1998 , 46, 1691-1700	8.4	146
16	Standard free energy change of formation per unit volume: a new parameter for evaluating nucleation and growth of oxides, sulphides, carbides and nitrides. <i>Materials Research Innovations</i> , 1997 , 1, 157-160	1.9	24
15	Synthesis and solid solution in ceramic (Ca1\subseteq Srx)2PbO4. <i>Journal of Materials Research</i> , 1996 , 11, 3045-	30 <u>4.</u> 7	1
14	Magnetic field dependence of Jc in Bi?Pb?Sr?Ca?Cu?O/Ag superconducting microcomposites. <i>Physica C: Superconductivity and Its Applications</i> , 1992 , 192, 173-180	1.3	2
13	Synthesis of superconducting microcomposite coatings by melt writing and oxidation of Bi?Pb?Sr?Ca?Cu?Ag metallic precursor alloys. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1991 , 8, 63-70	3.1	5
12	The reactions of Bi(Pb?Sr?Ca?Cu?O?Ag supercnducting microcomposites placed in contact with silver, gold, palladium, nickel, copper and platinum substrates. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1991 , 10, 247-255	3.1	5
11	Increasing the critical current density of BSCCO/Ag superconducting microcomposites by mechanical deformation. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 181, 105-120	1.3	22
10	The microstructure and mechanical properties of Bi(Pb)-Sr-Ca-Cu-Ag metallic precursor ribbons produced by the melt-spinning process. <i>Journal of Materials Science</i> , 1991 , 26, 4186-4193	4.3	
9	The microstructure and mechanical properties of Bi(Pb)-Sr-Ca-Cu-Ag metallic precursor ribbons produced by the melt-spinning process. <i>Journal of Materials Science</i> , 1991 , 26, 4186-4193	4.3	3
8	The degradation behavior of high-Tc BSCCO/Ag superconducting microcomposites in water. <i>Materials Letters</i> , 1991 , 12, 47-53	3.3	10
7	Synthesis of high-Tc superconducting materials by oxidation and press coating of metallic precursor alloys. <i>Materials Letters</i> , 1991 , 10, 444-449	3.3	6

6	A metallurgical approach to high-Tc microcomposites. <i>Jom</i> , 1990 , 42, 19-22	2.1	4
5	Synthesis of superconducting microcomposite coatings by melt-dipping and oxidation of Bi-Pb-Sr-Ca-Cu-Ag metallic precursor alloys. <i>Physica C: Superconductivity and Its Applications</i> , 1990 , 171, 69-76	1.3	9
4	The effect of Ag on the microstructure and properties of Bi(Pb)-Sr-Ca-Cu oxide/Ag superconducting microcomposites produced by oxidation of metallic precursor alloys. <i>Physica C: Superconductivity and Its Applications</i> , 1990 , 167, 395-407	1.3	26
3	The formation of superconducting phases in Bi(Pb)Brtatu oxide/Ag microcomposites produced by oxidation of metallic precursor alloys. <i>Journal of Materials Research</i> , 1990 , 5, 2633-2645	2.5	20
2	Characteristics and Failure Behaviors of an MnCo2O4 Spinel Coating in High-Temperature Oxidation Processes. <i>Transactions of the Indian Institute of Metals</i> ,1	1.2	О
1	Experimental Study on the Thermal Performance of Rice Straw-Mortar Composite Materials. <i>KSCE Journal of Civil Engineering</i> ,1	1.9	О