Ran Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4820001/publications.pdf

Version: 2024-02-01

279798 289244 1,660 75 23 40 citations h-index g-index papers 75 75 75 1824 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Revealing the Orbital Angular Momentum Spectrum and Correlation Phase of Optical Vortices With Wander Perturbations and Spiral Offsets. Journal of Lightwave Technology, 2022, 40, 2008-2014.	4.6	4
2	Photonic Moir \tilde{A} lattice waveguide with a large slow light bandwidth and delay-bandwidth product. Applied Optics, 2022, 61, 5776.	1.8	3
3	Stop band blocking window modeling with energy absorber in 5G midâ€band cellular communications. International Journal of RF and Microwave Computer-Aided Engineering, 2021, 31, e22533.	1.2	O
4	Independent Bifocal Metalens Design Based on Deep Learning Algebra. IEEE Photonics Technology Letters, 2021, 33, 403-406.	2.5	8
5	Optimization of Graphene-Based Slot Waveguides for Efficient Modulation. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-5.	2.9	4
6	Experimental demonstration of a graphene-based hybrid plasmonic modulator: publisher's note. Optics Letters, 2020, 45, 827.	3.3	0
7	Realizing the electromagnetically induced transparency (EIT)-like transmission with a single hole-ring resonator. Optics Communications, 2019, 445, 101-105.	2.1	4
8	Graphene-based Hybrid Plasmonic Modulator with High Modulation Efficiency. , 2019, , .		0
9	Spoof Surface Plasmonic Graphene for Controlling the Transports and Emissions of Electromagnetic Waves. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 50-56.	4.6	7
10	Frequency optimization of permeability metamaterial for enhanced resolution. Applied Optics, 2019, 58, 3200.	1.8	1
11	Experimental demonstration of a graphene-based hybrid plasmonic modulator. Optics Letters, 2019, 44, 2586.	3.3	23
12	Increasing the bandwidth of slow light in fishbone-like grating waveguides. Photonics Research, 2019, 7, 240.	7.0	5
13	Carrier Dynamics of Nanopillar Textured Ultrathin Si Film/PEDOT:PSS Heterojunction Solar Cell. IEEE Journal of Photovoltaics, 2018, 8, 757-762.	2.5	3
14	Toroidal Localized Spoof Plasmons on Compact Metadisks. Advanced Science, 2018, 5, 1700487.	11.2	27
15	Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10, 8023-8030.	5.6	84
16	Wideband slow light in grating waveguides. , 2018, , .		0
17	Large modulation capacity in graphene-based slot modulators by enhanced hybrid plasmonic effects. Scientific Reports, 2018, 8, 16830.	3.3	5
18	Ridge waveguide assisted highly efficient transverse-electric-pass polarizer based on a hybrid plasmonic waveguide. Applied Optics, 2018, 57, 5533.	1.8	7

#	Article	IF	CITATIONS
19	Highly Efficient Graphene-Based Optical Modulator With Edge Plasmonic Effect. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	11
20	Design of Ultracompact Graphene-Based Superscatterers. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 130-137.	2.9	23
21	Modeling and Optimization of Substrate Electromagnetic Coupling and Isolation in Modern Lightly Doped CMOS Substrate. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 662-669.	2.2	1
22	A Low-Profile Broadband Bandpass Frequency Selective Surface With Two Rapid Band Edges for 5G Near-Field Applications. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 670-676.	2.2	61
23	Electromagnetic Characteristics of Multiport TSVs Using L-2L De-Embedding Method and Shielding TSVs. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 1541-1548.	2.2	12
24	An Active Absorber Based on Nonvolatile Floating-Gate Graphene Structure. IEEE Nanotechnology Magazine, 2017, 16, 189-195.	2.0	8
25	Gradient Chiral Metamirrors for Spinâ€Selective Anomalous Reflection. Laser and Photonics Reviews, 2017, 11, 1700115.	8.7	89
26	A TE/TM independent polarizer based on graphene interferometer. , 2017, , .		0
27	A graphene-on-gap modulator with high modulation efficiency. , 2017, , .		0
28	A broadband and tunable absorber with non-volatile floating-gate graphene structure. , 2017, , .		0
29	Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect. Optics Letters, 2017, 42, 1736.	3.3	44
30	Fullâ€Polarization 3D Metasurface Cloak with Preserved Amplitude and Phase. Advanced Materials, 2016, 28, 6866-6871.	21.0	259
31	Terahertz modulator based on graphene-embedded waveguide. , 2016, , .		0
32	Plasmonic transmission lines with zero crosstalk., 2016,,.		1
33	A graphene-based all-fiber electro-absorption modulator. Journal of Optics (India), 2016, 45, 337-342.	1.7	8
34	Concealing arbitrary objects remotely with multi-folded transformation optics. Light: Science and Applications, 2016, 5, e16177-e16177.	16.6	52
35	Large slow light capacity in graphene-based grating waveguide. , 2016, , .		0
36	Scaling Analysis of High Gain Monolayer MoS ₂ Photodetector for Its Performance Optimization. IEEE Transactions on Electron Devices, 2016, 63, 1608-1614.	3.0	12

#	Article	IF	CITATIONS
37	Improved Slow Light Capacity In Graphene-based Waveguide. Scientific Reports, 2015, 5, 15335.	3.3	31
38	Graphene Assisted TE/TM-Independent Polarizer Based on Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 2015, 27, 1112-1115.	2.5	36
39	Graphene-aluminum oxide metamaterial for a compact polarization-independent modulator., 2015,,.		2
40	Tunable slow wave waveguides based on graphene. , 2015, , .		0
41	Graphene Embedded Modulator with Extremely Small Footprint and High Modulation Efficiency. Journal of Photonics, 2014, 2014, 1-6.	1.0	1
42	PDN Impedance Modeling for Multiple Through Vias Array in Doped Silicon. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1202-1209.	2.2	7
43	Double-Shielded Interposer With Highly Doped Layers for High-Speed Signal Propagation. IEEE Transactions on Electromagnetic Compatibility, 2014, 56, 1210-1217.	2.2	5
44	Full RLGC model extraction of Through Silicon Via (TSV) with charge distribution effects. Journal of Electromagnetic Waves and Applications, 2014, 28, 1596-1609.	1.6	2
45	A Graphene-Enhanced Fiber-Optic Phase Modulator With Large Linear Dynamic Range. IEEE Photonics Technology Letters, 2014, 26, 1867-1870.	2.5	24
46	The study of few-layer graphene based Machâ^'Zehnder modulator. Optics Communications, 2014, 323, 49-53.	2.1	41
47	Ultra-compact graphene-embedded optical phase modulators. , 2014, , .		5
48	Tunability Analysis of a Graphene-Embedded Ring Modulator. IEEE Photonics Technology Letters, 2014, 26, 2008-2011.	2.5	60
49	Recent developments in graphene-based optical modulators. Frontiers of Optoelectronics, 2014, 7, 277-292.	3.7	17
50	Dynamic control of wideband slow wave in graphene based waveguides. Optics Letters, 2014, 39, 3094.	3.3	16
51	A non-contact graphene surface scattering rate characterization method at microwave frequency by combining Raman spectroscopy and coaxial connectors measurement. Carbon, 2014, 77, 53-58.	10.3	17
52	Ultra-compact optical modulator by graphene induced electro-refraction effect. Applied Physics Letters, 2013, 103, .	3.3	118
53	Reconfigurable Parallel Plasmonic Transmission Lines With Nanometer Light Localization and Long Propagation Distance. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4601809-4601809.	2.9	6
54	Ab initio optical study of graphene on hexagonal boron nitride and fluorographene substrates. Journal of Materials Chemistry C , 2013 , 1 , 1618 .	5.5	39

#	Article	IF	CITATIONS
55	Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide. Optics Letters, 2013, 38, 2512.	3.3	55
56	Unidirectional surface plasmons in nonreciprocal graphene. New Journal of Physics, 2013, 15, 113003.	2.9	40
57	Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37, 2934.	3.3	29
58	Novel Demodulation Method for Fiber-Optic Interferometers Based on \$pi/2\$ Phase Modulation. IEEE Photonics Technology Letters, 2012, 24, 1981-1983.	2.5	4
59	A wedge-to-wedge plasmonic waveguide for subwavelength confinement and long-range propagation. , 2012, , .		0
60	Silicon slow light photonic crystals structures: present achievements and future trends. Frontiers of Optoelectronics in China, 2011, 4, 243-253.	0.2	4
61	Influence of the localization of process-induced disorder on planar photonic crystal waveguide properties. Proceedings of SPIE, 2010, , .	0.8	0
62	Investigation of the effects of process-induced disorder location on planar photonic crystal waveguide properties. Microelectronic Engineering, 2010, 87, 2301-2305.	2.4	0
63	Polarizing beam splitter based on a subwavelength asymmetric profile grating. Journal of Optics (United Kingdom), 2010, 12, 015703.	2.2	14
64	A high performance polarization independent reflector based on a multilayered configuration grating structure. Journal of Optics (United Kingdom), 2010, 12, 045703.	2.2	18
65	Novel Kind of Semislow Light Photonic Crystal Waveguides With Large Delay-Bandwidth Product. IEEE Photonics Technology Letters, 2010, 22, 844-846.	2.5	38
66	Wideband Slow Light in One-Dimensional Chirped Holey Grating Waveguide. IEEE Photonics Technology Letters, 2010, 22, 1135-1137.	2.5	14
67	Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18, 5942.	3.4	76
68	Improvement of delay-bandwidth product†in photonic crystal slow-light waveguides. Optics Express, 2010, 18, 16309.	3.4	58
69	A new kind of semi-slow light photonic crystal waveguides with large delay-bandwidth product. Proceedings of SPIE, 2010, , .	0.8	0
70	Silicon nanophotonic devices based on periodic structures. , 2010, , .		0
71	Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching. Journal of Vacuum Science & Technology B, 2009, 27, 568-572.	1.3	28
72	Flat Band Slow Light in Symmetric Line Defect Photonic Crystal Waveguides. IEEE Photonics Technology Letters, 2009, 21, 1571-1573.	2.5	64

Ran Hao

#	Article	IF	CITATIONS
73	Design of annular photonic crystal slabs. Optics Letters, 2008, 33, 1614.	3.3	24
74	The complete bandgap in ring-shaped photonic crystal SOI slab. , 2008, , .		1
75	Silicon based ultra-compact modulator with photonic crystal. Proceedings of SPIE, 2007, , .	0.8	O