
Takeshi T Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Foot–Floor Friction on Trip-Induced Falls During Shuffling Gait: A Simulation Study. Lecture Notes in Networks and Systems, 2022, , 856-860.	0.7	0
2	The Future of Footwear Friction. Lecture Notes in Networks and Systems, 2022, , 841-855.	0.7	8
3	Development of high slip-resistant footwear outsole using rubber surface filled with activated carbon/sodium chloride. Scientific Reports, 2022, 12, 267.	3.3	14
4	Impact of rubber block end-face corner radius on the friction coefficient between rubber blocks and a glass plate under dry and lubrication conditions. Tribology International, 2022, 174, 107705.	5.9	4
5	Friction behavior of silicone rubber hemisphere under non-uniform wetting states: With water droplets in air or air bubbles in water. Tribology International, 2021, 155, 106769.	5.9	12
6	Optimizing the frictional behavior of partially wetting soft contacts as measured with hydrogel covered silicones. Tribology International, 2021, 153, 106586.	5.9	9
7	Effect of Combining Hydrophobic and Hydrophilic Treatments on Slip Resistance for Wet Flat Glass Flooring. Lecture Notes in Networks and Systems, 2021, , 682-688.	0.7	0
8	Effect of foot–floor friction on the external moment about the body center of mass during shuffling gait: a pilot study. Scientific Reports, 2021, 11, 12133.	3.3	4
9	Friction behavior between an artificial skin block and a glass plate under unlubricated and partly/completely water-lubricated conditions. Tribology International, 2021, 163, 107179.	5.9	8
10	Wear behavior of thermoplastic urethane for the outer soles of spike shoes. Wear, 2021, , 204105.	3.1	1
11	Measurement of Friction Coefficient Between Shoe Sole and Floor Surface during Walking Using Sensor Shoe System. The Proceedings of the Symposium on Sports and Human Dynamics, 2021, 2021, C-10-3.	0.0	0
12	Influence of unforced dewetting and enforced wetting on real contact formation and friction behavior between rubber hemisphere and glass plate during contacting and sliding processes. Tribology International, 2020, 141, 105921.	5.9	15
13	Effects of Porosity and SEBS Fraction on Dry Sliding Friction of EVA Foams for Sports Shoe Sole Applications. Tribology Transactions, 2020, 63, 1067-1075.	2.0	5
14	Effects of Rosin Powder Application on the Frictional Behavior Between a Finger Pad and Baseball. Frontiers in Sports and Active Living, 2020, 2, 30.	1.8	10
15	Effect of the Porosity Distribution on Dry Sliding Friction and Wear of Cross-Linked Ethylene Vinyl Acetate Foams With a Skin Layer. Biotribology, 2020, 22, 100128.	1.9	6
16	Dry sliding friction and Wear behavior of thermoplastic polyurethane against abrasive paper. Biotribology, 2020, 23, 100130.	1.9	26
17	Comparison of lower limb joint moment and power during turning gait between young and old adults using hierarchical Bayesian inference. Journal of Biomechanics, 2020, 103, 109702.	2.1	2
18	High-speed-braking performance of rubber brake filled with RB ceramics particles under rain conditions. Transactions of the JSME (in Japanese), 2020, 86, 19-00397-19-00397.	0.2	0

Такезні Т Үамадисні

#	Article	IF	CITATIONS
19	A Study on the Effect of Friction between Fingertip and Ball on Baseball Pitching Performance. The Proceedings of Mechanical Engineering Congress Japan, 2020, 2020, S11522.	0.0	0
20	Tribology for Preventing Slips. Journal of the Japan Society for Precision Engineering, 2020, 86, 605-608.	0.1	0
21	Distribution of the local required coefficient of friction in the shoe–floor contact area during straight walking: A pilot study. Biotribology, 2019, 19, 100101.	1.9	4
22	Friction control of a resin foam/rubber laminated block material. Tribology International, 2019, 136, 548-555.	5.9	22
23	Tribological behavior of polyacetal composite lubricated in sodium hypochlorite solution. Wear, 2019, 428-429, 272-278.	3.1	3
24	Effect of groove width and depth and urethane coating on slip resistance of vinyl flooring sheet in glycerol solution. Tribology International, 2019, 135, 89-95.	5.9	17
25	Microstructural, Mechanical, and Tribological Properties of Rice Husk–Based Carbon: Effect of Carbonizing Temperature. Tribology Transactions, 2019, 62, 218-229.	2.0	2
26	Effects of age-related changes in step length and step width on the required coefficient of friction during straight walking. Gait and Posture, 2019, 69, 195-201.	1.4	10
27	Effects of Particulate and Fibrous Carbon Filler Combinations on the Tribological Behavior of a Polyacetal Composite under Water Lubrication. Tribology Online, 2019, 14, 321-326.	0.9	1
28	Sliding friction characteristics of styrene butadiene rubbers with varied surface roughness under water lubrication. Tribology International, 2019, 133, 230-235.	5.9	24
29	Effect of Porosity and Normal Load on Dry Sliding Friction of Polymer Foam Blocks. Tribology Letters, 2018, 66, 1.	2.6	16
30	Effect of Temperature on the Dry Sliding Friction and Wear of Rice Bran Ceramics against Different Counterpart Materials. Tribology Transactions, 2018, 61, 279-286.	2.0	4
31	Tribological behavior of polyacetal composite filled with rice bran ceramics particles under water lubrication. Journal of Composite Materials, 2018, 52, 2075-2084.	2.4	6
32	Tribological Behavior of Rice Bran Ceramics in a Vacuum Environment. Tribology Transactions, 2018, 61, 911-919.	2.0	1
33	Decrease in required coefficient of friction due to smaller lean angle during turning in older adults. Journal of Biomechanics, 2018, 74, 163-170.	2.1	13
34	Relationship between slip angle in ramp test and coefficient of friction values at shoe-floor interface measured with cart-type friction measurement device. Journal of Biomechanical Science and Engineering, 2018, 13, 17-00389-17-00389.	0.3	14
35	Effect of rubber block height and orientation on the coefficients of friction against smooth steel surface lubricated with glycerol solution. Tribology International, 2017, 110, 96-102.	5.9	42
36	Dry sliding friction of ethylene vinyl acetate blocks: Effect of the porosity. Tribology International, 2017, 116, 264-271.	5.9	20

#	Article	IF	CITATIONS
37	Relationship between sliding-induced wear and severity of sliding contact for polyamide 66 filled with hard filler. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 783-790.	1.8	5
38	Effect of coefficient of friction at the sliding zone of chip-tool interface on chip curl diameter and secondary shear zone thickness during tapping process. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2017, 11, JAMDSM0007-JAMDSM0007.	0.7	1
39	Required coefficient of friction in the anteroposterior and mediolateral direction during turning at different walking speeds. PLoS ONE, 2017, 12, e0179817.	2.5	11
40	Textural Characteristics and Friction Properties of Facial Tissues. Tribology Online, 2017, 12, 238-246.	0.9	0
41	Development of a New Tapping Tool Covered with Nickel/Abrasive Particles Composite Film for Preventing Chip Snarling and Tool Service Life Extension. Tribology Online, 2016, 11, 81-87.	0.9	6
42	Friction and Wear Properties of PEEK Resin Filled with RB Ceramics Particles under Water Lubricated Condition. Tribology Online, 2016, 11, 653-660.	0.9	9
43	Effect of friction at chip–tool interface on chip geometry and chip snarling in tapping process. International Journal of Machine Tools and Manufacture, 2016, 107, 60-65.	13.4	13
44	Friction and wear behavior of stainless steel fabricated by powder bed fusion process under oil lubrication. Tribology International, 2016, 104, 183-190.	5.9	6
45	Contribution of center of mass–center of pressure angle tangent to the required coefficient of friction in the sagittal plane during straight walking. Biotribology, 2016, 5, 16-22.	1.9	17
46	Misalignment of the Desired and Measured Center of Pressure Describes Falls Caused by Slip during Turning. PLoS ONE, 2016, 11, e0155418.	2.5	7
47	Improvement in Mixed Lubrication Characteristics of Electromagnetic Clutch Coated with DLC-Si Film by Controlling Surface Roughness and Providing Micro-Groove. Tribology Online, 2016, 11, 13-23.	0.9	3
48	Magnesium carbonate and rosin powders stabilize sliding motion between rubber-gloved human hand and grasped cylindrical bar. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2015, 9, JAMDSM0026-JAMDSM0026.	0.7	1
49	Friction and Wear Behavior of Polyamide 66 Composites Filled with Rice Bran Ceramics under a Wide Range of <i>Pv</i> Values. Tribology Online, 2015, 10, 213-219.	0.9	7
50	Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces. Applied Ergonomics, 2015, 51, 9-17.	3.1	19
51	Development of Carbon Contact Strip using RB Ceramics. IEEJ Transactions on Industry Applications, 2015, 135, 426-431.	0.2	1
52	Footwear width and balance-recovery reactions: A new approach to improving lateral stability in older adults. Gerontechnology, 2015, 13, 359-367.	0.1	2
53	Development of a High Slip-resistant Footwear Outsole Using a Hybrid Rubber Surface Pattern. Industrial Health, 2014, 52, 414-423.	1.0	23
54	Tribological behavior of RH ceramics made from rice husk sliding against stainless steel, alumina, silicon carbide, and silicon nitride. Tribology International, 2014, 73, 187-194.	5.9	22

Такезні Т Үамадисні

#	Article	IF	CITATIONS
55	Tribological behavior of polyamide 66/rice bran ceramics and polyamide 66/glass bead composites. Wear, 2014, 317, 1-7.	3.1	26
56	Kinematics of center of mass and center of pressure predict friction requirement at shoe–floor interface during walking. Gait and Posture, 2013, 38, 209-214.	1.4	35
57	Study on Estimation of Contact Pressure Distribution at the Rubber Sphere - Glass Plate Interface Based on Luminance Distribution Analysis. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2013, 79, 4464-4473.	0.2	2
58	Experimental study on microscopic wear mechanism of copper/carbon/rice bran ceramics composites. Wear, 2012, 294-295, 270-276.	3.1	19
59	Effect of turning angle on falls caused by induced slips during turning. Journal of Biomechanics, 2012, 45, 2624-2629.	2.1	30
60	Experimental Analysis of the Distribution of Traction Coefficient in the Shoe-Ground Contact Area during Running. Tribology Online, 2012, 7, 267-273.	0.9	8
61	Development of new footwear sole surface pattern for prevention of slip-related falls. Safety Science, 2012, 50, 986-994.	4.9	35
62	Preliminary Study of Wide Base-of-Support Footwear in Preventing Falls Caused by Lateral Slip during Walking. Tribology Online, 2012, 7, 159-164.	0.9	1
63	Friction and Wear Properties of Copper/Carbon/Rice Bran Ceramics Composite under Water-Lubricated Condition. Tribology Online, 2011, 6, 180-184.	0.9	9
64	Sliding velocity dependency of the friction coefficient of Si-containing diamond-like carbon film under oil lubricated condition. Tribology International, 2011, 44, 1296-1303.	5.9	22
65	Polymer Composites Filled with RB Ceramics Particles as Low Friction and High Wear Resistant Filler. Tribology Online, 2010, 5, 19-26.	0.9	14
66	Friction and wear properties of rice husk ceramics under dry condition. Journal of Mechanical Science and Technology, 2010, 24, 85-88.	1.5	13
67	New technique of three directional ground reaction force distributions. Footwear Science, 2010, 2, 57-64.	2.1	10
68	Friction and Wear Properties of Sintered Cu Alloy Impregnated with Thermo-Reversible Gel-Lubricant. Tribology Online, 2010, 5, 118-122.	0.9	2
69	Friction and Wear of Polyamide 66 Composites Filled with RB Ceramics Particles under Dry Condition. Tribology Online, 2010, 5, 87-91.	0.9	15
70	Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite under Electrical Current. Tribology Online, 2009, 4, 131-134.	0.9	11
71	The Effect of Carbonizing Temperature on Friction and Wear Properties of Hard Porous Carbon Materials Made from Rice Husk. Tribology Online, 2009, 4, 11-16.	0.9	10
72	Friction and Wear Properties of Rice Husk Ceramics under Dry and Water Lubricated Conditions. Tribology Online, 2009, 4, 78-81.	0.9	8

Такезні Т Үамадисні

#	Article	IF	CITATIONS
73	Experimental Analysis of Slip Potential in Normal-Style Walking and Nanba-Style Walking. Journal of Biomechanical Science and Engineering, 2009, 4, 468-479.	0.3	6
74	Friction and Wear Properties of Copper/Carbon/RB Ceramics Composite Materials under Dry Condition. Tribology Online, 2008, 3, 222-227.	0.9	16
75	Effect of Step Length and Walking Speed on Traction Coefficient and Slip between Shoe Sole and Walkway. Tribology Online, 2008, 3, 59-64.	0.9	21
76	Experimental Analyses of Load Carrying Effects on the Peak Traction Coefficient between Shoe Sole and Floor during Walking. Tribology Online, 2008, 3, 342-347.	0.9	2
77	`Walking-Mode Maps' Based on Slip/Non-Slip Criteria. Industrial Health, 2008, 46, 23-31.	1.0	21
78	Evaluation of DLC-Si Film Damage due to Friction under ATF Lubricated Condition. Tribology Online, 2008, 3, 1-5.	0.9	3
79	Kinematic and Tribological Analysis of Slip Phenomena during Walking. , 2008, , 644-650.		0
80	Preparation and tribological properties of SiC/rice bran carbon composite ceramics. Journal of Materials Research, 2005, 20, 3439-3448.	2.6	21
81	Development of a Low Friction Runner and Analysis of the New Start Technique for Bobsleigh. Hyomen Kagaku, 2005, 26, 762-765.	0.0	1