Xing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819827/publications.pdf

Version: 2024-02-01

56	1,187	19	33
papers	citations	h-index	g-index
58	58	58	2096
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dual-functional 3D carbon fibers decorated with Co nanoparticles and Co-N _{<i>x</i>} sites for rechargeable aprotic Li–O ₂ batteries. New Journal of Chemistry, 2022, 46, 11570-11578.	1.4	3
2	Ultra-Thin Wrinkled Carbon Sheet as an Anode Material of High-Power-Density Potassium-Ion Batteries. Molecules, 2022, 27, 2973.	1.7	2
3	A Hybrid Separator with Fast Ionic Conductor for the Application of Lithium-Metal Batteries. Journal of Electronic Materials, 2022, 51, 4307-4316.	1.0	7
4	Effect of <scp>phosphorus–nitrogen</scp> compound on flame retardancy and mechanical properties of polylactic acid. Journal of Applied Polymer Science, 2021, 138, 49829.	1.3	21
5	Guiding uniform Zn deposition by cocoons for long-life Zn metal batteries. New Journal of Chemistry, 2021, 45, 9747-9750.	1.4	1
6	LaTi 21 O 38 /CuLaO 2 /C O O Nanorods as Highâ€Performance Anode Materials for Lithiumâ€ion Batteries. ChemistrySelect, 2021, 6, 11108-11114.	0.7	1
7	Template-assisted synthesis of porous Co3O4 nanosheet with excellent electrochemical performance for rechargeable lithium-ion batteries. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	1
8	Colorimetric detection of Cs ⁺ based on the nonmorphological transition mechanism of gold nanoparticles in the presence of Prussian blue. New Journal of Chemistry, 2020, 44, 2241-2246.	1.4	7
9	A Co-Doped Nanorod-like RuO2 Electrocatalyst with Abundant Oxygen Vacancies for Acidic Water Oxidation. IScience, 2020, 23, 100756.	1.9	125
10	Vanadium Hexacyanoferrate Derived Vâ€Feâ€K Mixed Oxides as Anode Materials for Lithiumâ€lon Batteries. ChemistrySelect, 2020, 5, 13748-13753.	0.7	2
11	The preparation, characterization, and catalytic performance of porous fibrous LaFeO3 perovskite made from a sunflower seed shell template. Frontiers of Chemical Science and Engineering, 2020, 14, 967-975.	2.3	8
12	Li2CoTi3O8 and its composite nanofibers as high performance and long cycle lithium ion electrode materials. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
13	Electrospun MnxCo0.5â^xSn0.502 and SnO2 porous nanofibers and nanoparticles as anode materials for lithium-ion battery. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
14	Colorimetric detection of Ba ²⁺ , Cd ²⁺ and Pb ²⁺ based on a multifunctionalized Au NP sensor. Analyst, The, 2019, 144, 5081-5089.	1.7	21
15	Scalable synthesis of one-dimensional Na ₂ Li ₂ Ti ₆ O ₁₄ nanofibers as ultrahigh rate capability anodes for lithium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 646-653.	3.0	10
16	A Stable Amineâ€Functionalized Microporous Metal–Organic Framework for Thermodynamically and Kinetically Selective Gas Separations. ChemistrySelect, 2019, 4, 3841-3847.	0.7	5
17	Rapid colorimetric detection of potassium ions based on crown ether modified Au NPs sensor. Sensors and Actuators B: Chemical, 2019, 281, 783-788.	4.0	26
18	Improving the stability of silver nanowire/polyimide composite films for transparent film heaters. Journal of Materials Science: Materials in Electronics, 2019, 30, 2089-2095.	1.1	9

#	Article	IF	CITATIONS
19	Rapid and sensitive colorimetric sensing of the insecticide pymetrozine using melamine-modified gold nanoparticles. Analytical Methods, 2018, 10, 417-421.	1.3	20
20	Colorimetric Sensor Array for Detection of Iron(II) Ion. Current Organic Chemistry, 2018, 22, 831-834.	0.9	2
21	Potential-resolved "in-electrode―type electrochemiluminescence immunoassay based on functionalized g-C 3 N 4 nanosheet and Ru-NH 2 for simultaneous determination of dual targets. Biosensors and Bioelectronics, 2017, 95, 27-33.	5.3	37
22	Electrospun one-dimensional BaLi2Ti6O14 nanofibers for high rate performing lithium-ion battery. Materials Today Energy, 2016, 1-2, 17-23.	2.5	16
23	An "in-electrode―type immunosensing strategy for the detection of squamous cell carcinoma antigen based on electrochemiluminescent AuNPs/g-C 3 N 4 nanocomposites. Talanta, 2016, 160, 247-255.	2.9	27
24	Popcorn-Derived Porous Carbon for Energy Storage and CO ₂ Capture. Langmuir, 2016, 32, 8042-8049.	1.6	107
25	Sulfonamide and Morpholineâ€Based Dual Chemosensor for Cu ²⁺ and Ag ⁺ in Different Solvent Media. Chinese Journal of Chemistry, 2016, 34, 931-936.	2.6	4
26	Faraday cage-type electrochemiluminescence immunosensor for ultrasensitive detection of Vibrio vulnificus based on multi-functionalized graphene oxide. Analytical and Bioanalytical Chemistry, 2016, 408, 7203-7211.	1.9	17
27	A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1-5.	4.0	103
28	High catalytic active palladium nanoparticles gradually discharged from multilayer films to promote Suzuki, Heck and Sonogashira cross coupling reactions. Journal of Colloid and Interface Science, 2016, 463, 13-21.	5.0	16
29	A highly active multiâ€usable palladium pyridylfluorene filmâ€based catalyst for C–C crossâ€coupling reactions. Applied Organometallic Chemistry, 2015, 29, 840-845.	1.7	3
30	Synthesis and characterization of organosoluble and transparent polyimides derived from <i>trans</i> \$\displaysin \frac{1}{2}\displaysin \displaysin \	1.3	6
31	Sythesis, Modification, and Biosensing Characteristics of Au ₂ S/AuAgS-Coated Gold Nanorods. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1
32	Electrospun V2O5 micro/nanorods as cathode materials for lithium ion battery. Journal of Electroanalytical Chemistry, 2015, 759, 184-189.	1.9	22
33	Trace amount Cull (ppm) and mixture design of Cull/Pdll catalyzed Suzuki cross-coupling reactions based on the cooperative interaction of metal with a conjugated pyridylspirobifluorene. Journal of Materials Chemistry A, 2015, 3, 6265-6270.	5.2	4
34	Pd- and Ni-Pyridyl Complexes Deposited as Films for Suzuki–Miyaura and Mizoroki–Heck Cross Coupling Reactions. Catalysis Letters, 2015, 145, 2010-2019.	1.4	7
35	Syntheses, Crystal Structure, and Properties of Cu(II) and Zn(II) Complexes with EDO-TTF-3-py. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 65-69.	0.6	0
36	Self-ordering of organic-metal hybrid microstructures based on tetrathiafulvalene derivatives. Synthetic Metals, 2014, 189, 42-46.	2.1	14

#	Article	IF	Citations
37	A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosensors and Bioelectronics, 2014, 54, 199-206.	5.3	77
38	Trace amount Pd(ppm)-catalyzed Sonogashira, Heck and Suzuki cross-coupling reactions based on synergistic interaction with an asymmetric conjugated pyridinespirofluorene. Nanoscale, 2014, 6, 6473.	2.8	12
39	A simple visual and highly selective colorimetric detection of Hg2+ based on gold nanoparticles modified by 8-hydroxyquinolines and oxalates. Chemical Communications, 2014, 50, 6447.	2.2	53
40	Synthesis of a new two-dimensional Cd(II) coordination compound by benzotriazole-5-carboxylate acid and 1,10-phenanthroline and its crystal structure and characterization. Chemical Research in Chinese Universities, 2014, 30, 347-351.	1.3	3
41	A new rapid colorimetric detection method of Mn2+ based on tripolyphosphate modified silver nanoparticles. Sensors and Actuators B: Chemical, 2013, 181, 288-293.	4.0	62
42	Assembly of a multilayer film and catalytic application in Suzuki cross-coupling reaction based on synergistic effects of a conjugated organometallic pyridyl Pt(Cî€,C)2 moiety with palladium. Chemical Communications, 2013, 49, 10004.	2.2	17
43	The structure and coordinative self-assembly of films based on a palladium compound of pyridyl-acetylene platinum and its application in Suzuki and Heck coupling reactions. Journal of Materials Chemistry A, 2013, 1, 9164.	5.2	12
44	Syntheses, Crystal Structures and Electrochemical Activities of Co(II) and Cu(II)-Complexes with 5-Aminosalicylate Derivatives. Journal of Chemical Crystallography, 2013, 43, 568-575.	0.5	2
45	Biotemplated Syntheses of Macroporous Materials for Bone Tissue Engineering Scaffolds and Experiments in Vitro and Vivo. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5557-5562.	4.0	22
46	Synthesis, Photoluminescent, and Magnetic Properties of Two Lanthanide Sulfosalicylate Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 698-704.	0.6	11
47	Synthesis, photoluminescence, catalysis and multilayer film assembly of an ethynylpyridine platinum compound. CrystEngComm, 2011, 13, 920-926.	1.3	6
48	Self-assembly of metal–organic frameworks: From packing helical channels to 2-fold interpenetration helical layers. CrystEngComm, 2011, 13, 6373.	1.3	4
49	Syntheses, structures, and fluorescence of two cadmium compounds [Cd2(pqc)4(phen)2(H2O)2] · 2H2 and {[Cd(pqc)2(bpy)(H2O)2] · 2H2O} n. Journal of Coordination Chemistry, 2011, 64, 473-482.	² 8. ₈	5
50	Crystal Structure and Photoluminescent Properties of Two Cadmium(II) Complexes with Orotic Acid. Journal of Chemical Crystallography, 2011, 41, 823-828.	0.5	2
51	Design and comparison of ex situ and in situ devices for Raman characterization of lithium titanate anode material. lonics, 2011, 17, 503-509.	1.2	49
52	Crystal Structures and Luminescent Properties of Two Zinc(II) Complexes with 2-Phenylquinoline-4-carboxylates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 798-804.	0.6	2
53	Assembly of Metalâ^'Organic Frameworks with Helical Layer: From 2D Parallel Interpenetrated Layer to 3D Self-Penetrating Network. Crystal Growth and Design, 2009, 9, 660-662.	1.4	76
54	Novel (3,4)―and (4,5)â€Connected Lanthanide Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2008, 2008, 98-105.	1.0	31

#	Article	IF	CITATIONS
55	One-Pot Synthesis of Supramolecular Isomers with Two-Dimensional $4 < \sup 4 < \sup 7$ Grid and Three-Dimensional $6 < \sup 4 < \sup 7$. $8 < \sup 7 < \sup 7$ NbO Frameworks: Solvothermal in Situ Ligand Formation and Conformational Isomers Separation. Crystal Growth and Design, 2008, 8, 3504-3507.	1.4	35
56	Hydrothermal synthesis, crystal structure and magnetic properties of a samarium coordination polymer $\{[Sm \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 2 \cdot sub \cdot 3 \cdot sub \cdot 4 \cdot sub $	0.8	11