
Xian-Jun Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819700/publications.pdf Version: 2024-02-01

Χιλη-Ιιίη Οιι

#	Article	IF	CITATIONS
1	ZnO nanoparticles promote the malignant transformation of colorectal epithelial cells in APC mice. Environment International, 2022, 158, 106923.	4.8	13
2	Novel 5-fluorouracil sensitizers for colorectal cancer therapy: Design and synthesis of S1P receptor 2 (S1PR2) antagonists. European Journal of Medicinal Chemistry, 2022, 227, 113923.	2.6	5
3	Atypical chemokine receptor 3 induces colorectal tumorigenesis in mice by promoting β-arrestin-NOLC1-fibrillarin-dependent rRNA biogenesis. Acta Pharmacologica Sinica, 2022, 43, 2967-2976.	2.8	3
4	Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts. Cell Death and Disease, 2022, 13, 380.	2.7	46
5	Increased S1P induces S1PR2 internalization to blunt the sensitivity of colorectal cancer to 5-fluorouracil via promoting intracellular uracil generation. Acta Pharmacologica Sinica, 2021, 42, 460-469.	2.8	11
6	Nuclear translocation of ATG5 induces DNA mismatch repair deficiency (MMRâ€D)/microsatellite instability (MSI) via interacting with Mis18α in colorectal cancer. British Journal of Pharmacology, 2021, 178, 2351-2369.	2.7	7
7	Myricetin and M10, a myricetin-3-O-β-d-lactose sodium salt, modify composition of gut microbiota in mice with ulcerative colitis. Toxicology Letters, 2021, 346, 7-15.	0.4	10
8	Design, synthesis and biological evaluation of sphingosine-1-phosphate receptor 2 antagonists as potent 5-FU-resistance reversal agents for the treatment of colorectal cancer. European Journal of Medicinal Chemistry, 2021, 225, 113775.	2.6	9
9	M10, a Myricetin-3-O-b-D-Lactose Sodium Salt, Prevents Ulcerative Colitis Through Inhibiting Necroptosis in Mice. Frontiers in Pharmacology, 2020, 11, 557312.	1.6	13
10	SphK2 confers 5-fluorouracil resistance to colorectal cancer via upregulating H3K56ac-mediated DPD expression. Oncogene, 2020, 39, 5214-5227.	2.6	18
11	S1PR2 inhibitors potently reverse 5-FU resistance by downregulating DPD expression in colorectal cancer. Pharmacological Research, 2020, 155, 104717.	3.1	24
12	Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Letters, 2020, 474, 36-52.	3.2	200
13	Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-I°B/STAT3/ERK and AKT pathways in colonic mucosal cells. Environmental Pollution, 2020, 263, 114578.	3.7	8
14	CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. Journal of Experimental and Clinical Cancer Research, 2019, 38, 32.	3.5	151
15	Oridonin derivatives as potential anticancer drug candidates triggering apoptosis through mitochondrial pathway in the liver cancer cells. European Journal of Medicinal Chemistry, 2019, 178, 365-379.	2.6	36
16	Development of M10, myricetin-3-O-β-d-lactose sodium salt, a derivative of myricetin as a potent agent of anti-chronic colonic inflammation. European Journal of Medicinal Chemistry, 2019, 174, 9-15.	2.6	19
17	Knockdown of IGF-1R Triggers Viral RNA Sensor MDA5- and RIG-I-Mediated Mitochondrial Apoptosis in Colonic Cancer Cells. Molecular Therapy - Nucleic Acids, 2019, 16, 105-117.	2.3	11
18	Metformin inhibited colitis and colitis-associated cancer (CAC) through protecting mitochondrial structures of colorectal epithelial cells in mice. Cancer Biology and Therapy, 2019, 20, 338-348.	1.5	33

Xian-Jun Qu

#	Article	IF	CITATIONS
19	CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis. Oncogene, 2019, 38, 1560-1575.	2.6	31
20	The CXCR7/CXCR4 heterodimer induced histone demethylation: A new mechanism of colorectal tumorigenesis. FASEB Journal, 2019, 33, 674.1.	0.2	0
21	Knockdown of CXCR4 Inhibits CXCL12-Induced Angiogenesis in HUVECs through Downregulation of the MAPK/ERK and PI3K/AKT and the Wnt/β-Catenin Pathways. Cancer Investigation, 2018, 36, 10-18.	0.6	56
22	Chemopreventive effect of Myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomedicine and Pharmacotherapy, 2018, 97, 1131-1137.	2.5	46
23	M10, a novel derivative of Myricetin, prevents ulcerative colitis and colorectal tumor through attenuating robust endoplasmic reticulum stress. Carcinogenesis, 2018, 39, 889-899.	1.3	32
24	CXCR7/CXCR4 heterodimer-induced histone demethylation: a new mechanism of colorectal tumorigenesis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-10-4.	0.0	0
25	CXCL12/CXCR4 axis induced miR-125b promotes invasion and confers 5-fluorouracil resistance through enhancing autophagy in colorectal cancer. Scientific Reports, 2017, 7, 42226.	1.6	85
26	An oasis in the desert of cancer chemotherapeutic resistance: The enlightenment from reciprocal crosstalk between signaling pathways of UPR and autophagy in cancers. Biomedicine and Pharmacotherapy, 2017, 92, 972-981.	2.5	11
27	Overexpression of SphK2 contributes to ATRA resistance in colon cancer through rapid degradation of cytoplasmic RXRα by K48/K63-linked polyubiquitination. Oncotarget, 2017, 8, 39605-39617.	0.8	21
28	Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation. Oncology Reports, 2016, 35, 343-351.	1.2	34
29	Roles and Signaling Pathways of Des-Î ³ -Carboxyprothrombin in the Progression of Hepatocellular Carcinoma. Cancer Investigation, 2016, 34, 459-464.	0.6	12
30	Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomedicine and Pharmacotherapy, 2016, 77, 37-44.	2.5	94
31	MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Molecular Cancer, 2015, 14, 208.	7.9	98
32	Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway. Nutrients, 2015, 7, 4383-4402.	1.7	61
33	{2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic Acid Methyl Ester Inhibited Hepatocellular Carcinoma Growth in Bel-7402 Cells and Its Resistant Variants by Activation of NOX4 and SIRT3. BioMed Research International, 2015, 2015, 1-10.	0.9	2
34	{2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) inhibited human hepatocellular carcinoma growth through upregulation of Sirtuin-3 (SIRT3). Biomedicine and Pharmacotherapy, 2015, 69, 125-132.	2.5	6
35	13F-1, a novel 5-fluorouracil prodrug containing an Asn–Gly–Arg (NO2) COOCH3 tripeptide, inhibits human colonic carcinoma growth by targeting Aminopeptidase N (APN/CD13). European Journal of Pharmacology, 2014, 734, 50-59.	1.7	14
36	Association of CD98, integrin β1, integrin β3 and Fak with the progression and liver metastases of colorectal cancer. Pathology Research and Practice, 2014, 210, 668-674.	1.0	38

#	Article	IF	CITATIONS
37	Riccardin D-26, a synthesized macrocyclic bisbibenzyl compound, inhibits human hepatocellular carcinoma growth through induction of apoptosis in p53-dependent way. Cancer Letters, 2013, 328, 104-113.	3.2	17