Keshav Rajpure

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4819690/keshav-rajpure-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183 6,849 50 69 g-index

183 7,501 4.4 6.15 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
183	The influence of nickel substitution on the structural and gas sensing properties of sprayed ZnFe2O4 thin films. <i>Journal of Materials Science: Materials in Electronics</i> , 2022 , 33, 6273	2.1	O
182	Recent Advancements in Doped Titanium Dioxide (TiO2) Nanostructures for Photocatalytic Dye Degradation. <i>Nanobiotechnology Reports</i> , 2022 , 17, 39-58		0
181	Chemiresistive Gas Sensing Properties of Copper Substituted Zinc Ferrite Thin Films Deposited by Spray Pyrolysis. <i>Journal of Electronic Materials</i> , 2021 , 50, 2460-2465	1.9	5
180	Enhanced Photoelectrocatalytic Degradation Activity of Titanium Dioxide Photoelectrode: Effect of Film Thickness. <i>Colloid Journal</i> , 2021 , 83, 107-115	1.1	4
179	Hydrothermally-Grown TiO2 Thin Film-Based MetalBemiconductorMetal UV Photodetector. <i>Journal of Electronic Materials</i> , 2020 , 49, 499-509	1.9	8
178	Photoelectrocatalytic activity of spray deposited Fe2O3/ZnO photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2019 , 248, 114386	3.1	19
177	Electrochemical and surface deformation studies on electrodeposited nanostructured Bi2Te3 thin films. <i>Optics and Laser Technology</i> , 2019 , 113, 384-393	4.2	4
176	Spray deposited Fe 2 O 3 and stratified Fe 2 O 3 /ZnO novel photoelectrode for photoelectrocatalytic degradation of benzoic acid under solar light illumination. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 357, 72-80	4.7	17
175	Nanocrystalline Bi 2 Te 3 thin films synthesized by electrodeposition method for photoelectrochemical application. <i>Materials Science in Semiconductor Processing</i> , 2018 , 79, 119-126	4.3	11
174	Nanocrystalline immobilised ZnO photocatalyst for degradation of benzoic acid and methyl blue dye. <i>Materials Research Bulletin</i> , 2018 , 101, 324-333	5.1	30
173	Mimicking the Synaptic Weights and Human Forgetting Curve Using Hydrothermally Grown Nanostructured CuO Memristor Device. <i>Journal of Nanoscience and Nanotechnology</i> , 2018 , 18, 984-991	1.3	20
172	Photoelectrocatalytic activity of immobilized Fe2O3 photoelectrode for degradation of salicylic acid and methyl orange dye under visible light illumination. <i>Ionics</i> , 2018 , 24, 1841-1853	2.7	8
171	Bipolar resistive switching with coexistence of mem-elements in the spray deposited CoFe2O4 thin film. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 3231-3238	2.1	16
170	Spray deposited Fe2O3 photoelectrode for degradation of benzoic acid and methyl blue dye under solar radiation. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 20875-20884	2.1	7
169	ZnO nanorod based highly selective visible blind ultra-violet photodetector and highly sensitive NO2 gas sensor. <i>Superlattices and Microstructures</i> , 2018 , 120, 170-186	2.8	25
168	Photoelectrocatalytic activity of immobilized Yb doped WO 3 photocatalyst for degradation of methyl orange dye. <i>Journal of Energy Chemistry</i> , 2017 , 26, 440-447	12	30
167	Assessment of structural, morphological, magnetic and gas sensing properties of CoFe(2)O(4) thin films. <i>Journal of Colloid and Interface Science</i> , 2017 , 497, 181-192	9.3	32

(2016-2017)

166	Photoelectrochemical performance and photoelectrocatalytic degradation of organic compounds using Ga:WO 3 thin films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 344, 56-63	4.7	13	
165	Enhanced magnetoelectric effect in Metglas/K0.5 Na0.5NbO3/metglas lead-free ME laminates. <i>Functional Materials Letters</i> , 2017 , 10, 1650076	1.2	2	
164	Chemical synthesis of pinecone like ZnO films for UV photodetector applications. <i>Thin Solid Films</i> , 2017 , 642, 232-240	2.2	26	
163	Effect of write voltage and frequency on the reliability aspects of memristor-based RRAM. <i>International Nano Letters</i> , 2017 , 7, 209-216	5.7	23	
162	Bio-mimicking the synaptic weights, analog memory, and forgetting effect using spray deposited WO3 memristor device. <i>Microelectronic Engineering</i> , 2017 , 183-184, 12-18	2.5	22	
161	Photoelectrochemical and photocatalytic activities of bilayered TiO2/Ga:WO3 photoelectrode by spray pyrolysis technique. <i>Materials Research Bulletin</i> , 2017 , 95, 491-496	5.1	3	
160	Development of CoFe 2 O 4 thin films for nitrogen dioxide sensing at moderate operating temperature. <i>Journal of Alloys and Compounds</i> , 2016 , 657, 414-421	5.7	22	
159	Photoelectrocatalytic degradation of benzoic acid using immobilized tungsten trioxide photocatalyst. <i>Materials Chemistry and Physics</i> , 2016 , 183, 439-446	4.4	13	
158	Synthesis and characterization of zinc stannate thin films prepared by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 2016 , 27, 12323-12328	2.1	2	
157	Compositional variation of structural, electrical and magnetic properties of Dy substituted Ni t o spinel ferrite. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 10484-10496	2.1	13	
156	Fabrication of Ni0.4Zn0.6Fe2O4 B aTiO3 bilayered thin films obtained by spray pyrolysis method for magnetoelectric (ME) effect measurement. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 3799-3811	2.1	8	
155	Multifunctional zinc oxide thin films for high-performance UV photodetectors and nitrogen dioxide gas sensors. <i>RSC Advances</i> , 2016 , 6, 25641-25650	3.7	54	
154	Chemical bath deposited ZnO thin film based UV photoconductive detector. <i>Journal of Alloys and Compounds</i> , 2016 , 664, 242-249	5.7	91	
153	Photoelectrocatalytic degradation of methyl blue using sprayed WO3 thin films. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 1629-1635	2.1	40	
152	Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO3 photoelectrode. <i>Journal of Alloys and Compounds</i> , 2016 , 655, 106-113	5.7	56	
151	Visible light catalysis of methyl orange using nanostructured WO3 thin films. <i>Ceramics International</i> , 2016 , 42, 789-798	5.1	50	
150	Synthesis of fast response, highly sensitive and selective Ni:ZnO based NO2 sensor. <i>Chemical Engineering Journal</i> , 2016 , 286, 36-47	14.7	85	
149	Investigating the Temperature Effects on ZnO, TiO2, WO3 and HfO2 Based Resistive Random Access Memory (RRAM) Devices. <i>Journal of Nano- and Electronic Physics</i> , 2016 , 8, 04030-1-04030-4	1.5	9	

148	Effect of Ni content on the structural, morphological and magnetic properties of spray deposited NiZn ferrite thin films. <i>Materials Research Bulletin</i> , 2015 , 67, 47-54	5.1	29
147	Effect of Substrate Temperature on the Properties of Sprayed WO3 Thin Films Using Peroxotungstic Acid and Ammonium Tungstate: A Comparative Study. <i>Journal of Electronic Materials</i> , 2015 , 44, 874-885	1.9	8
146	Oxidative degradation of salicylic acid by sprayed WO3 photocatalyst. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2015 , 200, 78-83	3.1	24
145	Distribution of cations in Co1MMnxFe2O4 using XRD, magnetization and MBsbauer spectroscopy. Journal of Alloys and Compounds, 2015 , 646, 550-556	5.7	50
144	Effect of intermittent time on structural, optoelectronic, luminescence properties of sprayed antimony doped tin oxide thin films. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 112, 214-220	6	18
143	Nitrogen dioxide sensing properties of sprayed tungsten oxide thin film sensor: Effect of film thickness. <i>Journal of Colloid and Interface Science</i> , 2015 , 451, 245-54	9.3	42
142	Photoelectrocatalytic degradation of methyl red using sprayed WO3 thin films under visible light irradiation. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 8404-8412	2.1	46
141	Physicochemical properties of sprayed V2O5 thin films: Effect of substrate temperature. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 115, 57-65	6	40
140	Studies on structural and electrical properties of Li 0.50.5x Co x Fe 2.50.5x O 4 (00k 0.6) spinel ferrite. <i>Physica B: Condensed Matter</i> , 2015 , 474, 47-52	2.8	18
139	Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 142, 118-23	6.7	29
138	Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 142, 204-11	6.7	48
137	Enhanced photocatalytic activity of sprayed Au doped ferric oxide thin films for salicylic acid degradation in aqueous medium. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2015 , 142, 43-	56 ^{6.7}	15
136	Exploring structural and magnetic properties of nanocrystalline iron oxide synthesized by autocombustion method. <i>Superlattices and Microstructures</i> , 2015 , 77, 181-195	2.8	20
135	Effect of solution concentration on physicochemical and gas sensing properties of sprayed WO3 thin films. <i>Current Applied Physics</i> , 2015 , 15, 84-93	2.6	27
134	Photoelectrocatalytic degradation of benzoic acid using sprayed TiO2 thin films. <i>Ceramics International</i> , 2015 , 41, 2202-2208	5.1	16
133	Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method. <i>Materials Science-Poland</i> , 2015 , 33, 852-861	0.6	13
132	Effect of the buffer layer on the metalsemiconductors thetal UV photodetector based on Al-doped and undoped ZnO thin films with different device structures. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 1704-1712	1.6	16
131	Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique. <i>Journal of Semiconductors</i> , 2015 , 36, 033002	2.3	19

(2014-2015)

Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method. <i>Electronic Materials Letters</i> , 2015 , 11, 944-948	2.9	28	
Studies on NO2 gas sensing properties of sprayed Co1MMnxFe2O4 (0MD.5) spinel ferrite thin films. <i>Ceramics International</i> , 2015 , 41, 7394-7401	5.1	16	
The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method. <i>Journal of Magnetism and Magnetic Materials</i> , 2015 , 382, 152-157	2.8	19	
Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films. <i>Journal of Materials Engineering and Performance</i> , 2014 , 23, 1204-1213	1.6	30	
Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. <i>Journal of Magnetism and Magnetic Materials</i> , 2014 , 363, 114-120	2.8	47	
Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 107, 233-241	6	51	
Photodegradation of organic pollutants using N-titanium oxide catalyst. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 141, 186-91	6.7	22	
Remediation of wastewater: role of hydroxyl radicals. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 141, 210-6	6.7	6	
ZnO based visible B lind UV photodetector by spray pyrolysis. <i>Superlattices and Microstructures</i> , 2014 , 76, 253-263	2.8	51	
IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites. <i>Physica B: Condensed Matter</i> , 2014 , 451, 39-42	2.8	10	
Synthesis and Characterization of Spray Deposited Nickel-Zinc Ferrite Thin Films. <i>Energy Procedia</i> , 2014 , 54, 599-605	2.3	12	
Effect of Co doping on structural, morphological and LPG sensing properties of nanocrystalline ZnO thin films. <i>Sensors and Actuators A: Physical</i> , 2014 , 216, 328-334	3.9	21	
Physicochemical Properties of Spray-Deposited CoFe2O4 Thin Films. <i>Journal of Materials Engineering and Performance</i> , 2014 , 23, 2787-2794	1.6	15	
High-performance metallemiconductorfhetal UV photodetector based on spray deposited ZnO thin films. <i>Journal of Alloys and Compounds</i> , 2014 , 595, 55-59	5.7	122	
Studies on the synthesis and characterization of co-precipitated nanocrystalline Zn P b D . <i>Journal of Molecular Structure</i> , 2014 , 1064, 130-134	3.4	2	
Photoelectrocatalytic activity of ferric oxide nanocatalyst: A synergestic effect of thickness. <i>Ceramics International</i> , 2014 , 40, 9463-9471	5.1	14	
Synthesis and characterization of Sb doped ZnO thin films for photodetector application. <i>Optical Materials</i> , 2014 , 36, 833-838	3.3	61	
UV assisted photoelectrocatalytic oxidation of phthalic acid using spray deposited Al doped zinc oxide thin films. <i>Journal of Alloys and Compounds</i> , 2014 , 611, 446-451	5.7	39	
	Materials Letters, 2015, 11, 944-948 Studies on NO2 gas sensing properties of sprayed Co18MnxFe2O4 (080.5) spinel ferrite thin films. Ceramics International, 2015, 41, 7394-7401 The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method. Journal of Magnetism and Magnetic Materials, 2015, 382, 152-157 Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films. Journal of Materials Engineering and Performance, 2014, 23, 1204-1213 Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. Journal of Magnetism and Magnetic Materials, 2014, 363, 114-120 Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature. Journal of Analytical and Applied Pyrolysis, 2014, 107, 233-241 Photodegradation of organic pollutants using N-titanium oxide catalyst. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 186-91 Remediation of wastewater: role of hydroxyl radicals. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 210-6 ZnO based visibleBlind UV photodetector by spray pyrolysis. Superlattices and Microstructures, 2014, 76, 253-263 IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites. Physica B: Condensed Matter, 2014, 451, 39-42 Synthesis and Characterization of Spray Deposited Nickel-Zinc Ferrite Thin Films. Energy Procedia, 2014, 54, 599-605 Effect of Co doping on structural, morphological and LPG sensing properties of nanocrystalline ZnO thin films. Sensors and Actuators A: Physical, 2014, 216, 328-334 Physicochemical Properties of Spray-Deposited CoFe2O4 Thin Films. Journal of Materials Engineering and Performance, 2014, 23, 2787-2794 High-performance metalBemiconductorfibetal UV photodetector based on spray deposited ZnO thin films. Journal of Alloys and Compounds, 2014, 595, 55-59 Studies on the synthesis and characterization of co-precipita	Studies on NO2 gas sensing properties of sprayed Co18MnxFe2O4 (080.5) spinel ferrite thin films. Ceramics International, 2015, 41, 7394-7401 The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method. Journal of Magnetism and Magnetic Materials, 2015, 382, 152-157 Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films. Journal of Materials Engineering and Performance, 2014, 23, 1204-1213 Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. Journal of Magnetism and Magnetic Materials, 2014, 363, 114-120 Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature. Journal of Analytical and Applied Pyrolysis, 2014, 107, 233-241 Photodegradation of organic pollutants using N-titanium oxide catalyst. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 186-91 Remediation of wastewater: role of hydroxyl radicals. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 210-6 ZnO based visible Blind UV photodetector by spray pyrolysis. Superlattices and Microstructures, 281014, 76, 253-263 IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites. Physica B: Condensed Mater, 2014, 341, 39-42 Synthesis and Characterization of Spray Deposited Nickel-Zinc Ferrite Thin Films. Energy Procedia, 2014, 54, 599-605 Effect of Co doping on structural, morphological and LPG sensing properties of nanocrystalline ZnO thin films. Journal of Alloys and Compounds, 2014, 595, 55-59 Effect of Co doping on structural, morphological and LPG sensing properties of nanocrystalline ZnO thin films. Journal of Alloys and Compounds, 2014, 595, 55-59 Studies on the synthesis and characterization of co-precipitated nanocrystalline ZnBbD. Journal of Molecular Structure, 2014, 1064, 130-134 Photoelectrocatalytic activity of ferric oxide nanocatalyst: A synergestic effect of th	Studies on NO2 gas sensing properties of sprayed Co18MnxFe2O4 (0BID.5) spinel ferrite thin films. Ceramics International, 2015, 41, 7394-7401 The effect of Co substitution on the structural and magnetic properties of lithium ferrite synthesized by an autocombustion method. Journal of Magnetism and Magnetic Materials, 2015, 382, 132-137 Structural, Optical, Electrical, and Dielectric Properties of the Spray-Deposited WO3 Thin Films. Journal of Materials Engineering and Performance, 2014, 23, 1204-1213 Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. Journal of Magnetism and Magnetic Materials, 2014, 363, 114-120 Development of Zn25nO4 thin films deposited by Spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature. Journal of Analytical and Applied Pyralysis, 2014, 107, 233-241 Photodegradation of organic pollutants using N-titanium oxide catalyst. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 186-91 Remediation of wastewater: role of hydroxyl radicals. Journal of Photochemistry and Photobiology B: Biology, 2014, 141, 210-6 ZnO based visibleBlind UV photodetector by spray pyrolysis. Superlattices and Microstructures, 2014, 76, 253-263 IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites. Physica B: Condensed Mater., 2014, 451, 39-42 Synthesis and Characterization of Spray Deposited Nickel-Zinc Ferrite Thin Films. Energy Procedia, 23 12 Effect of Co doping on structural, morphological and LPG sensing properties of nanocrystalline ZnO 39 21 Physicochemical Properties of Spray-Deposited CoFe2O4 Thin Films. Journal of Materials Engineering and Performance, 2014, 23, 2787-2794 High-performance metalBemiconductorfietal UV photodetector based on spray deposited ZnO 57 122 Studies on the synthesis and characterization of co-precipitated nanocrystalline ZnBbD. Journal of Molecular Structurar, 2014, 1064, 130-134 Photoelectrocatalytic activity of Ferric oxide nanocatalyst: A synergestic effect of

112	Oxidative degradation of industrial wastewater using spray deposited TiO2/Au:Fe2O3 bilayered thin films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 141, 315-24	6.7	18
111	Nanostructured TiO2 thin film memristor using hydrothermal process. <i>Journal of Alloys and Compounds</i> , 2014 , 593, 267-270	5.7	51
110	Visible light catalysis of rhodamine B using nanostructured Fe(2)O(3), TiO(2) and TiO(2)/Fe(2)O(3) thin films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2014 , 133, 90-8	6.7	76
109	Photocatalytic oxidation of Rhodamine B with ferric oxide thin films under solar illumination. <i>Materials Research Bulletin</i> , 2013 , 48, 4058-4065	5.1	39
108	Structural, morphological, dielectrical and magnetic properties of Mn substituted cobalt ferrite. Journal of Semiconductors, 2013 , 34, 093002	2.3	13
107	Kinetic Analysis of Heterogeneous Photocatalysis: Role of Hydroxyl Radicals. <i>Catalysis Reviews - Science and Engineering</i> , 2013 , 55, 79-133	12.6	78
106	Structural, morphological, electrical and magnetic properties of Dy doped Nito substitutional spinel ferrite. <i>Journal of Magnetism and Magnetic Materials</i> , 2013 , 329, 59-64	2.8	124
105	Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. <i>Journal of Alloys and Compounds</i> , 2013 , 551, 688-693	5.7	69
104	Physical properties of spray deposited Ni-doped zinc oxide thin films. <i>Ceramics International</i> , 2013 , 39, 3901-3907	5.1	38
103	Structural, morphological, dielectrical, magnetic and impedance properties of Co1MnxFe2O4. <i>Journal of Alloys and Compounds</i> , 2013 , 555, 330-334	5.7	64
102	Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2013 , 120, 1-9	6.7	41
101	Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films. <i>Journal of Semiconductors</i> , 2013 , 34, 053001	2.3	10
100	Photoelectrocatalytic oxidation of Rhodamine B with sprayed Fe2O3 photocatalyst. <i>Materials Express</i> , 2013 , 3, 247-255	1.3	26
99	Solar light assisted photocatalysis of water using a zinc oxide semiconductor. <i>Journal of Semiconductors</i> , 2013 , 34, 043002	2.3	5
98	Photo-corrosion inhibition and photoactivity enhancement with tailored zinc oxide thin films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2012 , 110, 15-21	6.7	56
97	N-doped ZnO based fast response ultraviolet photoconductive detector. <i>Solid-State Electronics</i> , 2012 , 68, 22-26	1.7	24
96	Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency. <i>Journal of Alloys and Compounds</i> , 2012 , 544, 145-151	5.7	113
95	Photoelectrocatalytic decolorization and degradation of textile effluent using ZnO thin films. Journal of Photochemistry and Photobiology B: Biology, 2012, 114, 102-7	6.7	48

(2011-2012)

94	Hydroxyl radical's role in the remediation of wastewater. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2012 , 116, 66-74	6.7	31
93	Oxidative degradation of acid orange 7 using Ag-doped zinc oxide thin films. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2012 , 117, 262-8	6.7	30
92	Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. <i>Applied Surface Science</i> , 2012 , 258, 9969-9976	6.7	91
91	Structural, optical, electrical and thermal properties of zinc oxide thin films by chemical spray pyrolysis. <i>Journal of Molecular Structure</i> , 2012 , 1021, 123-129	3.4	18
90	Fabrication and performance of N-doped ZnO UV photoconductive detector. <i>Journal of Alloys and Compounds</i> , 2012 , 522, 118-122	5.7	74
89	Photoelectrocatalytic degradation of oxalic acid by spray deposited nanocrystalline zinc oxide thin films. <i>Journal of Alloys and Compounds</i> , 2012 , 538, 237-243	5.7	26
88	Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2012 , 113, 70-7	6.7	84
87	Investigation of structural, optical and luminescent properties of sprayed N-doped zinc oxide thin films. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 97, 181-188	6	23
86	Size dependent electron-phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2012 , 98, 453-6	4.4	15
85	Photoelectrocatalytic activity of spray deposited ZnO thin films against E. coli Davis. <i>Materials Research Innovations</i> , 2012 , 16, 417-424	1.9	1
84	Structural, Morphological, Optical and Photoluminescence Properties of Ag-Doped Zinc Oxide Thin Films. <i>Materials Express</i> , 2012 , 2, 64-70	1.3	14
83	MBsbauer, Raman, and Magnetoresistance Study of Aluminum-Based Iron Oxide Thin Films. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3731-3736	3.8	49
82	Physical properties of hematite Fe2O3thin films: application to photoelectrochemical solar cells. Journal of Semiconductors, 2011 , 32, 013001	2.3	127
81	Semiconductor-septum solar rechargeable storage cells. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 1305-1309	5.7	5
80	Physical properties of chemical vapour deposited nanostructured carbon thin films. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 1418-1423	5.7	12
79	Sensing properties of sprayed antimony doped tin oxide thin films: Solution molarity. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 3108-3115	5.7	92
78	Structural, morphological and electrical properties of spray deposited CdIn2Se4 thin films. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 3116-3121	5.7	9
77	Studies on morphological and electrical properties of Al incorporated combusted iron oxide. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 3943-3951	5.7	15

76	X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 4603-4607	5.7	24
75	Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: Solar cells. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 7439-7446	5.7	98
74	Structural, compositional and electrical properties of co-precipitated zinc stannate. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 7508-7514	5.7	37
73	Physical properties of sprayed antimony doped tin oxide thin films: The role of thickness. <i>Journal of Semiconductors</i> , 2011 , 32, 053001	2.3	59
72	High-performance UV detector based on Ga-doped zinc oxide thin films. <i>Applied Surface Science</i> , 2011 , 257, 9595-9599	6.7	52
71	Photocatalytic oxidation of salicylic acid and 4-chlorophenol in aqueous solutions mediated by modified AlFe2O3 catalyst under sunlight. <i>Journal of Molecular Catalysis A</i> , 2011 , 347, 65-72		37
70	Fast response ultraviolet Ga-doped ZnO based photoconductive detector. <i>Materials Research Bulletin</i> , 2011 , 46, 1734-1737	5.1	54
69	Photocatalytic activity of sea water using TiOltatalyst under solar light. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2011 , 103, 111-7	6.7	29
68	Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2011 , 104, 425-33	6.7	100
67	Photoelectrochemical performance of sprayed n-CdIn2Se4 photoanodes. <i>Solar Energy</i> , 2011 , 85, 325-3	33 6.8	18
66	The n-CdIn2Se4/p-CdTe heterojunction solar cells. <i>Solar Energy</i> , 2011 , 85, 1336-1342	6.8	16
65	Development of CZTS thin films solar cells by pulsed laser deposition: Influence of pulse repetition rate. <i>Solar Energy</i> , 2011 , 85, 1354-1363	6.8	138
64	Structural, morphological, luminescent and electronic properties of sprayed aluminium incorporated iron oxide thin films. <i>Surface and Coatings Technology</i> , 2011 , 205, 3567-3577	4.4	27
63	Physical properties of spray deposited CdTe thin films: PEC performance. <i>Journal of Semiconductors</i> , 2011 , 32, 033001	2.3	41
62	Structural and optoelectronic properties of sprayed Sb:SnO2thin films: Effects of substrate temperature and nozzle-to-substrate distance. <i>Journal of Semiconductors</i> , 2011 , 32, 102001	2.3	13
61	Studies on the Dielectric and the Magnetic Properties of Co-Mn Ferrite and BZT Ferroelectric Particulate Magnetoelectric Composites. <i>Journal of the Korean Physical Society</i> , 2011 , 59, 3385-3390	0.6	8
60		o.6 5·7	22

(2009-2010)

58	Structural, optical and electrical properties of chemically sprayed nanosized gallium doped CdO thin films. <i>Journal of Alloys and Compounds</i> , 2010 , 496, 357-363	5.7	56	
57	Influences in high quality zinc oxide films and their photoelectrochemical performance. <i>Journal of Alloys and Compounds</i> , 2010 , 503, 416-421	5.7	38	
56	Structural and optoelectronic properties of antimony incorporated tin oxide thin films. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 416-422	5.7	93	
55	Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide. <i>Journal of Alloys and Compounds</i> , 2010 , 505, 743-749	5.7	68	
54	Studies on Structural and Dielectric Properties of CMFO Ferrite and BZT Ferroelectric Magnetoelectric Composites. <i>Integrated Ferroelectrics</i> , 2010 , 121, 1-12	0.8	13	
53	(Photo) electrochemical investigations on spray deposited n-CdIn 2Se4 thin film/polysulphide/c photoelectrochemical solar cell1. <i>Applied Solar Energy (English Translation of Geliotekhnika</i>), 2010 , 46, 194-201	1.3		
52	Temperature dependent structural, luminescent and XPS studies of CdO:Ga thin films deposited by spray pyrolysis. <i>Journal of Alloys and Compounds</i> , 2010 , 506, 794-799	5.7	40	
51	Electronphonon interaction and size effect study in catalyst based zinc oxide thin films. <i>Journal of Molecular Structure</i> , 2010 , 984, 186-193	3.4	26	
50	Temperature-Dependent Properties of Spray-Deposited ITO Thin Films. <i>Journal of Thermal Spray Technology</i> , 2010 , 19, 531-540	2.5	7	
49	Studies on dielectric and magnetoelectric behavior of 25% CMFO ferrite and 75% BZT ferroelectric multiferroic magnetoelectric composites. <i>Materials Letters</i> , 2010 , 64, 520-523	3.3	19	
48	Investigation of structural, morphological, luminescent and thermal properties of combusted aluminium-based iron oxide. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2886-2894	3.3	13	
47	Influence of substrates on photoelectrochemical performance of sprayed n-CdIn2S4 electrodes. <i>Solar Energy</i> , 2010 , 84, 1208-1215	6.8	34	
46	Studies on the effect of nozzle-to-substrate distance on the structural, electrical and optical properties of spray deposited CdIn2O4 thin films. <i>Applied Surface Science</i> , 2010 , 256, 3522-3530	6.7	14	
45	Influence of deposition temperature on morphological, optical, electrical and opto-electrical properties of highly textured nano-crystalline spray deposited CdO:Ga thin films. <i>Applied Surface Science</i> , 2010 , 257, 93-101	6.7	50	
44	Fabrication of Fe:CdSe solar rechargeable (semiconductorEeptum) storage cells. <i>Current Applied Physics</i> , 2009 , 9, 1122-1124	2.6	7	
43	Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films. <i>Physica B: Condensed Matter</i> , 2009 , 404, 1874-1877	2.8	31	
42	Effect of calcining temperature on electrical and dielectric properties of cadmium stannate. <i>Applied Surface Science</i> , 2009 , 255, 6675-6678	6.7	41	
41	Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. <i>Applied Surface Science</i> , 2009 , 255, 9358-9364	6.7	115	

40	Synthesis and characterization of CdIn2O4 thin films by spray pyrolysis technique. <i>Journal of Alloys and Compounds</i> , 2009 , 473, L20-L24	5.7	17
39	Electrical, structural and optical properties of SnO2:F thin films: Effect of the substrate temperature. <i>Journal of Alloys and Compounds</i> , 2009 , 488, 350-355	5.7	106
38	The effect of Mn substitution on the magnetic and dielectric properties of cobalt ferrite synthesized by an autocombustion route. <i>Smart Materials and Structures</i> , 2009 , 18, 115028	3.4	77
37	Dielectric properties and complex impedance spectroscopy studies of mixed Ni C o ferrites. <i>Smart Materials and Structures</i> , 2009 , 18, 085014	3.4	102
36	Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. <i>Solid State Sciences</i> , 2008 , 10, 1209-1214	3.4	80
35	Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 135404	3	75
34	Effect of concentration of SnCl4 on sprayed fluorine doped tin oxide thin films. <i>Journal of Alloys and Compounds</i> , 2008 , 455, 440-446	5.7	58
33	Room temperature electrocrystallization of CdSe thin films from ethylene glycol bath. <i>Journal of Alloys and Compounds</i> , 2008 , 459, 515-520	5.7	22
32	Effect of precursor concentration on the properties of ITO thin films. <i>Journal of Alloys and Compounds</i> , 2008 , 464, 387-392	5.7	56
31	Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 105109	3	81
30	Reply to Comments on Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films (<i>Journal Physics D: Applied Physics</i> , 2008 , 41, 228002	3	3
29	Preparation and properties of spray-deposited ZnIn2Se4 nanocrystalline thin films. <i>Journal of Physics and Chemistry of Solids</i> , 2008 , 69, 1747-1752	3.9	16
28	Spray deposition of highly transparent fluorine doped cadmium oxide thin films. <i>Applied Surface Science</i> , 2008 , 254, 2187-2195	6.7	99
27	Room temperature synthesis and characterization of CdO nanowires by chemical bath deposition (CBD) method. <i>Applied Surface Science</i> , 2008 , 254, 3269-3273	6.7	7 ²
26	Photoelectrochemical investigations on electrochemically deposited CdSe and Fe-doped CdSe thin films. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 45-49	6.4	34
25	Photoelectrochemical properties of spray deposited n-ZnIn2Se4 thin films. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 453-456	6.4	23
24	Solvent-dependent growth of sprayed FTO thin films with mat-like morphology. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1439-1444	6.4	51
23	Electrosynthesis and characterization of iron selenide thin films. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 560-565	6.4	36

22	Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath. <i>Applied Surface Science</i> , 2007 , 253, 7313-7317	6.7	28
21	Determination of CdIn2S4 semiconductor parameters by (photo)electrochemical technique. <i>Physica B: Condensed Matter</i> , 2007 , 393, 249-254	2.8	26
20	Properties of highly oriented spray-deposited fluorine-doped tin oxide thin films on glass substrates of different thickness. <i>Journal of Physics and Chemistry of Solids</i> , 2007 , 68, 1981-1988	3.9	38
19	Effect of solvent ratio on the properties of highly oriented sprayed fluorine-doped tin oxide thin films. <i>Materials Letters</i> , 2007 , 61, 3030-3036	3.3	60
18	Electrosynthesis and characterization of CdSe thin films: Optimization of preparative parameters by photoelectrochemical technique. <i>Journal of Physics and Chemistry of Solids</i> , 2006 , 67, 2386-2391	3.9	38
17	Structural, optical and electrical properties of chemically sprayed CdO thin films. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2005 , 122, 67-71	3.1	118
16	Structural and optical properties of spray-deposited CdIn2Se4 thin films. <i>Materials Chemistry and Physics</i> , 2003 , 78, 363-366	4.4	30
15	Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media. <i>Materials Chemistry and Physics</i> , 2002 , 73, 6-12	4.4	54
14	Effect of composition on the structural, optical and electrical properties of sprayed Sb2S3 thin films prepared from non-aqueous medium. <i>Journal of Physics and Chemistry of Solids</i> , 2000 , 61, 561-568	3.9	49
13	Effect of Se source on properties of spray deposited Sb2Se3 thin films. <i>Materials Chemistry and Physics</i> , 2000 , 62, 169-174	4.4	28
12	(Photo)electrochemical investigations on spray deposited n-Sb2S3 thin film/polyiodide/C photoelectrochemical solar cells. <i>Materials Chemistry and Physics</i> , 2000 , 63, 263-269	4.4	36
11	A study of substrate variation effects on the properties of n-Sb2S3 thin film/polyiodide/C photoelectrochemical solar cells. <i>Materials Chemistry and Physics</i> , 2000 , 64, 14-19	4.4	24
10	Sb2S3 semiconductor-septum rechargeable storage cell. <i>Materials Chemistry and Physics</i> , 2000 , 64, 70-7	44.4	67
9	Effect of Sb doping on properties of conductive spray deposited SnO2 thin films. <i>Materials Chemistry and Physics</i> , 2000 , 64, 184-188	4.4	83
8	Photoelectrochemical investigation on spray depositedn-CdIn2S4 thin films. <i>Bulletin of Materials Science</i> , 1999 , 22, 927-931	1.7	16
7	A comparative study of the properties of spray-deposited Sb2Se3 thin films prepared from aqueous and nonaqueous media. <i>Materials Research Bulletin</i> , 1999 , 34, 1079-1087	5.1	52
6	Transient photoconductivity measurements of spray deposited Sb2S3 and Bi2S3 thin films from non-aqueous medium. <i>Materials Chemistry and Physics</i> , 1999 , 59, 237-241	4.4	8
5	Preparation and characterization of electrodeposited Sb2Se3 thin films. <i>Materials Chemistry and Physics</i> , 1999 , 61, 219-222	4.4	35

4	Photoelectrochemical Studies on Electrodeposited Callebe Thin Films. <i>Physica Status Soliai A</i> , 1999 , 172, 415-423	14
3	Effect of relative amount of complexing agents on the properties of Sb2S3 precipitated powders. **Materials Chemistry and Physics, 1998 , 56, 177-183 4-4	8
2	A comparative study of concentration effect of complexing agent on the properties of spray deposited Sb2S3 thin films and precipitated powders. <i>Materials Chemistry and Physics</i> , 1997 , 51, 252-257 ⁴⁻⁴	17
1	Effect of the substrate temperature on the properties of spray deposited SbBe thin films from non-aqueous medium. <i>Thin Solid Films</i> , 1997 , 311, 114-118	61