
Gregory F Pach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mediating anion-cation interactions to improve aqueous flow battery electrolytes. Applied Materials Today, 2022, 28, 101512.	4.3	6
2	Suppressing Auger Recombination in Multiply Excited Colloidal Silicon Nanocrystals with Ligand-Induced Hole Traps. Journal of Physical Chemistry C, 2021, 125, 2565-2574.	3.1	7
3	Insights into the Dynamic Interfacial and Bulk Composition of Copper-Modified, Hydrogen-Alloyed, Palladium Nanocubes under Electrocatalytic Conditions. Journal of Physical Chemistry C, 2021, 125, 15487-15495.	3.1	1
4	Roll-To-Roll Friendly Solution-Processing of Ultrathin, Sintered CdTe Nanocrystal Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 44165-44173.	8.0	5
5	Surface band bending and carrier dynamics in colloidal quantum dot solids. Nanoscale, 2021, 13, 17793-17806.	5.6	2
6	Modulating donor–acceptor transition energies in phosphorus–boron co-doped silicon nanocrystals <i>via</i> X- and L-type ligands. Faraday Discussions, 2020, 222, 201-216.	3.2	9
7	SiO ₂ Is Wasted Space in Single-Nanometer-Scale Silicon Nanoparticle-Based Composite Anodes for Li-Ion Electrochemical Energy Storage. ACS Applied Energy Materials, 2020, 3, 10993-11001.	5.1	11
8	Cslâ€Antisolvent Adduct Formation in Allâ€Inorganic Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903365.	19.5	55
9	Measurement of band offsets and shunt resistance in CdTe solar cells through temperature and intensity dependence of open circuit voltage and photoluminescence. Solar Energy, 2019, 189, 389-397.	6.1	9
10	Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials. Journal of the American Chemical Society, 2019, 141, 15532-15546.	13.7	39
11	Tailoring the Surface of Silicon Nanoparticles for Enhanced Chemical and Electrochemical Stability for Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6176-6183.	5.1	17
12	Nonthermal Plasma-Synthesized Phosphorus–Boron co-Doped Si Nanocrystals: A New Approach to Nontoxic NIR-Emitters. Chemistry of Materials, 2019, 31, 4426-4435.	6.7	19
13	Size-Dependent Asymmetric Auger Interactions in Plasma-Produced n- and p-Type-Doped Silicon Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 5782-5789.	3.1	9
14	Enhanced Multiple Exciton Generation in PbS CdS Janus-like Heterostructured Nanocrystals. ACS Nano, 2018, 12, 10084-10094.	14.6	56
15	Tandem Solar Cells from Solution-Processed CdTe and PbS Quantum Dots Using a ZnTe–ZnO Tunnel Junction. Nano Letters, 2017, 17, 1020-1027.	9.1	71
16	Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%. Nature Energy, 2017, 2, .	39.5	172
17	Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells. ACS Energy Letters, 2017, 2, 270-278.	17.4	32
18	Quantum Dot Solar Cell Fabrication Protocols. Chemistry of Materials, 2017, 29, 189-198.	6.7	77

#	Article	IF	CITATIONS
19	Printed module interconnects. , 2015, , .		Ο
20	Ternary SiGeSn alloy nanocrystals via nonthermal plasma synthesis. Journal Physics D: Applied Physics, 0, , .	2.8	1
21	Surface Chemistry Effects on Quantum Confinement in Group IV Nanocrystals. , 0, , .		0
22	Surface Chemistry Effects on Quantum Confinement in Group IV Nanocrystals. , 0, , .		0