Bin Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819276/publications.pdf

Version: 2024-02-01

53	1,769	19	276875 41 g-index
papers	citations	h-index	
55	55	55	2819
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Facile Exfoliation of Two-Dimensional Crystalline Monolayer Nanosheets from an Amorphous Metal–Organic Framework. CCS Chemistry, 2022, 4, 1879-1888.	7.8	12
2	Adsorptive separation of butanol, acetone and ethanol in zeolite imidazolate frameworks with desirable pore apertures. Chemical Engineering Science, 2022, 248, 117251.	3.8	11
3	Monolayer Nanosheets Exfoliated from Cage-Based Cationic Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 1521-1529.	4.0	6
4	Confined Water Vapor in ZIF-8 Nanopores. ACS Omega, 2022, 7, 64-69.	3.5	8
5	High-temperature vanadium-free catalyst for selective catalytic reduction of NO with NH ₃ and theoretical study of La ₂ O ₃ over CeO ₂ /TiO ₂ . Catalysis Science and Technology, 2021, 11, 6112-6125.	4.1	8
6	Exploring the redox decomposition of ethylene carbonate–propylene carbonate in Li-ion batteries. Materials Advances, 2021, 2, 1747-1751.	5.4	18
7	Elevated electrochemical performances enabled by a core–shell titanium hydride coated separator in lithium–sulphur batteries. RSC Advances, 2021, 11, 30755-30762.	3. 6	3
8	Interaction Mechanisms between Lithium Polysulfides/Sulfide and Small Organic Molecules. ACS Omega, 2021, 6, 4995-5000.	3.5	10
9	LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 5898-5906.	2.2	35
10	Ligandâ€Conformerâ€Induced Formation of Zirconium–Organic Framework for Methane Storage and MTO Product Separation. Angewandte Chemie - International Edition, 2021, 60, 16521-16528.	13.8	29
11	Investigation of interface compatibility in stiff polymer/metal–organic frameworks. Materials Today Chemistry, 2021, 20, 100458.	3 . 5	17
12	Designing highly incompressible transition metal nitrides: A new class of W0.5Al0.5N phases. Journal of Applied Physics, 2021, 130, 065105.	2.5	1
13	Residual Guest-Assisted MOF-5 Powder Densification. Inorganic Chemistry, 2021, 60, 13419-13424.	4.0	5
14	Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Materials, 2021, 40, 490-498.	18.0	96
15	Improved electrochemical performance of a LiCoO ₂ /MCMB cell by regulating fluorinated electrolytes. RSC Advances, 2021, 11, 30763-30770.	3 . 6	0
16	Coupling external and internal pressure for the structural transition of MIL-53(Cr). Dalton Transactions, 2021, 50, 16371-16376.	3.3	1
17	A hybrid ionic liquid-based electrolyte for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2020, 44, 361-368.	2.8	34
18	Engineering micromechanics of soft porous crystals for negative gas adsorption. Chemical Science, 2020, 11, 9468-9479.	7.4	30

#	Article	IF	Citations
19	Adsorptive Separation of Furfural/5-Hydroxymethylfurfural in MAF-5 with Ellipsoidal Pores. Industrial & Engineering Chemistry Research, 2020, 59, 11734-11742.	3.7	15
20	Controllable Synthesis of Metal-Organic Framework/Polyethersulfone Composites. Crystals, 2020, 10, 39.	2.2	6
21	Low Temperature Calorimetry Coupled with Molecular Simulations for an In-Depth Characterization of the Guest-Dependent Compliant Behavior of MOFs. Chemistry of Materials, 2020, 32, 3489-3498.	6.7	8
22	The force of MOFs: the potential of switchable metal–organic frameworks as solvent stimulated actuators. Chemical Communications, 2020, 56, 7411-7414.	4.1	15
23	Synergistic Effect of Fluorinated Solvents for Improving High Voltage Performance of LiNi _{0.5} Mn _{1.5} O ₄ Cathode. Journal of the Electrochemical Society, 2020, 167, 120534.	2.9	9
24	Mechanical Control of the Kinetic Propylene/Propane Separation by Zeolitic Imidazolate Frameworkâ€8. Angewandte Chemie, 2019, 131, 13872-13876.	2.0	17
25	Mechanical Control of the Kinetic Propylene/Propane Separation by Zeolitic Imidazolate Frameworkâ€8. Angewandte Chemie - International Edition, 2019, 58, 13734-13738.	13.8	39
26	Surfactant Crystals as Stimulable Foam Stabilizers: Tuning Stability with Counterions. Journal of Surfactants and Detergents, 2019, 22, 1237-1245.	2.1	4
27	Investigation of Methane Adsorption in Strained IRMOF-1. Journal of Physical Chemistry C, 2019, 123, 24592-24597.	3.1	8
28	Tribological Properties of Typical Zeolitic Imidazolate Frameworks as Grease-Based Lubricant Additives. Journal of Materials Engineering and Performance, 2019, 28, 1668-1677.	2.5	9
29	Effect of Defects on the Mechanical Deformation Mechanisms of Metal–Organic Framework-5: A Molecular Dynamics Investigation. Journal of Physical Chemistry C, 2018, 122, 4300-4306.	3.1	13
30	Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Letters, 2018, 3, 1198-1204.	17.4	183
31	Investigation of the Linker Swing Motion in the Zeolitic Imidazolate Framework ZIF-90. Journal of Physical Chemistry C, 2018, 122, 7203-7209.	3.1	19
32	Size-Controllable Synthesis of Zeolitic Imidazolate Framework/Carbon Nanotube Composites. Crystals, 2018, 8, 367.	2.2	23
33	Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nature Materials, 2017, 16, 532-536.	27.5	306
34	Theoretical prediction of the mechanical properties of zeolitic imidazolate frameworks (ZIFs). RSC Advances, 2017, 7, 41499-41503.	3.6	18
35	Zâ€Shaped Pentalenoâ€Acene Dimers with High Stability and Small Band Gap. Angewandte Chemie - International Edition, 2016, 55, 2693-2696.	13.8	59
36	Selective Hydrogen Generation from Formic Acid with Wellâ€Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN ³ â€Pincer Ligand. Chemistry - an Asian Journal, 2016, 11, 1357-1360.	3.3	94

#	Article	IF	CITATIONS
37	Extended Dislocations in Plastically Deformed Metallic Nanoparticles. Nanomaterials and Nanotechnology, 2016, 6, 34.	3.0	2
38	Diffusion as a function of guest molecule length and functionalization in flexible metal–organic frameworks. Materials Horizons, 2016, 3, 355-361.	12.2	19
39	ZIF-8 gate tuning via terminal group modification: A computational study. Chemical Physics Letters, 2016, 658, 270-275.	2.6	9
40	Zâ€Shaped Pentalenoâ€Acene Dimers with High Stability and Small Band Gap. Angewandte Chemie, 2016, 128, 2743-2746.	2.0	15
41	Impact of mechanical deformation on guest diffusion in zeolitic imidazolate frameworks. Dalton Transactions, 2016, 45, 4346-4351.	3.3	11
42	Neodymium complex obtained from reductive-coupling of carbodiimide: Synthesis and structure of [(Cp″)2Nd(NR)2C—C(NR)2Nd(Cp″)2]. Chemical Research in Chinese Universities, 2015, 31, 704-707.	2.6	2
43	Towards <i>meso</i> â€Ester BODIPYs with Aggregationâ€Induced Emission Properties: The Effect of Substitution Positions. Chemistry - an Asian Journal, 2015, 10, 1631-1634.	3.3	41
44	Quinoidal Oligo(9,10â€anthryl)s with Chainâ€Lengthâ€Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release. Chemistry - A European Journal, 2015, 21, 18724-18729.	3.3	13
45	Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene. Angewandte Chemie - International Edition, 2015, 54, 14412-14416.	13.8	36
46	Theoretical model estimation of guest diffusion in metal–organic frameworks (MOFs). RSC Advances, 2015, 5, 70433-70438.	3.6	5
47	Synthesis of highly reactive polyisobutylene with FeCl ₃ /ether complexes in hexane; kinetic and mechanistic studies. Polymer Chemistry, 2015, 6, 322-329.	3.9	30
48	Indolo[2,3-b]carbazoles with tunable ground states: how Clar's aromatic sextet determines the singlet biradical character. Chemical Science, 2014, 5, 4944-4952.	7.4	39
49	Antiaromatic bisindeno-[n]thienoacenes with small singlet biradical characters: syntheses, structures and chain length dependent physical properties. Chemical Science, 2014, 5, 4490-4503.	7.4	62
50	Hydrogenation of Esters Catalyzed by Ruthenium PN ³ -Pincer Complexes Containing an Aminophosphine Arm. Organometallics, 2014, 33, 4152-4155.	2.3	74
51	Molecular Dynamics Simulations on Gate Opening in ZIF-8: Identification of Factors for Ethane and Propane Separation. Langmuir, 2013, 29, 8865-8872.	3.5	73
52	Force Field for Molecular Dynamics Computations in Flexible ZIF-8 Framework. Journal of Physical Chemistry C, 2012, 116, 933-938.	3.1	146
53	Phase boundary effects on the mechanical deformation of core/shell Cu/Ag nanoparticles. Journal of Materials Research, 2009, 24, 2210-2214.	2.6	12