Lukasz Sobotta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4819223/publications.pdf

Version: 2024-02-01

52	1,525	22	38
papers	citations	h-index	g-index
52	52	52	1741 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials, 2020, 10, 387.	1.9	333
2	Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. European Journal of Medicinal Chemistry, 2019, 175, 72-106.	2.6	133
3	Phthalocyanine Derivatives Possessing 2-(Morpholin-4-yl)ethoxy Groups As Potential Agents for Photodynamic Therapy. Journal of Medicinal Chemistry, 2015, 58, 2240-2255.	2.9	72
4	Photosensitizers Mediated Photodynamic Inactivation Against Virus Particles. Mini-Reviews in Medicinal Chemistry, 2015, 15, 503-521.	1.1	67
5	Non-porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Dyes and Pigments, 2019, 163, 337-355.	2.0	57
6	Porphyrinoids in photodynamic diagnosis and therapy of oral diseases. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1-10.	0.4	51
7	Functional singlet oxygen generators based on porphyrazines with peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 269, 9-16.	2.0	48
8	Phthalocyanines functionalized with 2-methyl-5-nitro-1H-imidazolylethoxy and 1,4,7-trioxanonyl moieties and the effect of metronidazole substitution on photocytotoxicity. Journal of Inorganic Biochemistry, 2013, 127, 62-72.	1.5	42
9	Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. Journal of Inorganic Biochemistry, 2018, 180, 1-14.	1.5	40
10	Photochemical studies and nanomolar photodynamic activities of phthalocyanines functionalized with 1,4,7-trioxanonyl moieties at their non-peripheral positions. Journal of Inorganic Biochemistry, 2016, 155, 76-81.	1.5	36
11	Dendrimeric Sulfanyl Porphyrazines: Synthesis, Physicoâ€Chemical Characterization, and Biological Activity for Potential Applications in Photodynamic Therapy. ChemPlusChem, 2016, 81, 460-470.	1.3	34
12	Titanium Dioxide-Based Photocatalysts for Degradation of Emerging Contaminants including Pharmaceutical Pollutants. Applied Sciences (Switzerland), 2021, 11, 8674.	1.3	34
13	Cellular Changes, Molecular Pathways and the Immune System Following Photodynamic Treatment. Current Medicinal Chemistry, 2014, 21, 4059-4073.	1.2	34
14	Chlorins with (trifluoromethyl)phenyl substituents – Synthesis, lipid formulation and photodynamic activity against bacteria. Dyes and Pigments, 2019, 160, 292-300.	2.0	32
15	Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sonoâ€Photodynamic Therapy. ChemMedChem, 2022, 17, .	1.6	31
16	Phthalocyanines with bulky substituents at non-peripheral positions – Synthesis and physico-chemical properties. Dyes and Pigments, 2016, 127, 110-115.	2.0	28
17	Photodynamic inactivation of Enterococcus faecalis by conjugates of zinc(II) phthalocyanines with thymol and carvacrol loaded into lipid vesicles. Inorganica Chimica Acta, 2019, 489, 180-190.	1.2	28
18	Porphyrazines with peripheral isophthaloxyalkylsulfanyl substituents and their optical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 54-67.	2.0	27

#	Article	IF	Citations
19	Sulfanyl porphyrazines: Molecular barrel-like self-assembly in crystals, optical properties and inÂvitro photodynamic activity towards cancer cells. Dyes and Pigments, 2017, 136, 898-908.	2.0	27
20	In vitro photodynamic activity of lipid vesicles with zinc phthalocyanine derivative against Enterococcus faecalis. Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 111-118.	1.7	26
21	Photodynamic inactivation of Enterococcus faecalis by non-peripherally substituted magnesium phthalocyanines entrapped in lipid vesicles. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 100-106.	1.7	25
22	Synthesis, characteristics and photochemical studies of novel porphyrazines possessing peripheral 2,5-dimethylpyrrol-1-yl and dimethylamino groups. Tetrahedron Letters, 2012, 53, 2040-2044.	0.7	23
23	Lipid vesicle-loaded meso-substituted chlorins of high in vitro antimicrobial photodynamic activity. Photochemical and Photobiological Sciences, 2019, 18, 213-223.	1.6	23
24	Optical properties of a series of pyrrolyl-substituted porphyrazines and their photoinactivation potential against Enterococcus faecalis after incorporation into liposomes. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 104-109.	2.0	23
25	Photophysical properties and photochemistry of a sulfanyl porphyrazine bearing isophthaloxybutyl substituents. Dyes and Pigments, 2015, 113, 702-708.	2.0	21
26	Photosensitizers Mediated Photodynamic Inactivation against Fungi. Nanomaterials, 2021, 11, 2883.	1.9	21
27	Electrochemical properties of metallated porphyrazines possessing isophthaloxybutylsulfanyl substituents: Application in the electrocatalytic oxidation of hydrazine. Electrochimica Acta, 2015, 168, 216-224.	2.6	20
28	The chitosan – Porphyrazine hybrid materials and their photochemical properties. Journal of Photochemistry and Photobiology B: Biology, 2018, 181, 1-13.	1.7	18
29	Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts. Archives of Toxicology, 2012, 86, 483-496.	1.9	15
30	Unusual cis-diprotonated forms and fluorescent aggregates of non-peripherally alkoxy-substituted metallophthalocyanines. Physical Chemistry Chemical Physics, 2017, 19, 21390-21400.	1.3	14
31	Influence of bulky pyrrolyl substitent on the physicochemical properties of porphyrazines. Dyes and Pigments, 2015, 112, 138-144.	2.0	13
32	Single-walled carbon nanotube/sulfanyl porphyrazine hybrids deposited on glassy carbon electrode for sensitive determination of nitrites. Dyes and Pigments, 2019, 171, 107660.	2.0	12
33	Spectroscopic and quantum chemical study of phthalocyanines with 1,4,7-trioxanonyl moieties. Journal of Molecular Structure, 2020, 1203, 127371.	1.8	11
34	Photodynamic Activity of Tribenzoporphyrazines with Bulky Periphery against Wound Bacteria. International Journal of Molecular Sciences, 2020, 21, 6145.	1.8	11
35	S-seco-porphyrazine as a new member of the seco-porphyrazine family – Synthesis, characterization and photocytotoxicity against cancer cells. Bioorganic Chemistry, 2020, 96, 103634.	2.0	11
36	Experimental and computational study on the reactivity of 2,3-bis[(3-pyridylmethyl)amino]-2(Z)-butene-1,4-dinitrile, a key intermediate for the synthesis of tribenzoporphyrazine bearing peripheral methyl(3-pyridylmethyl)amino substituents. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2011, 142, 599-608.	0.9	10

3

#	Article	IF	Citations
37	The Suzuki cross-coupling reaction for the synthesis of porphyrazine possessing bulky 2,5-(biphenyl-4-yl)pyrrol-1-yl substituents in the periphery. Polyhedron, 2015, 102, 462-468.	1.0	9
38	Menthol modified zinc(II) phthalocyanine regioisomers and their photoinduced antimicrobial activity against Staphylococcus aureus. Dyes and Pigments, 2021, 193, 109410.	2.0	9
39	Photochemical properties and photocytotoxicities against wound bacteria of sulfanyl porphyrazines with bulky peripheral substituents. Journal of Organometallic Chemistry, 2021, 934, 121669.	0.8	8
40	Nanomolar photodynamic activity of porphyrins bearing 1,4,7-trioxanonyl and 2-methyl-5-nitroimidazole moieties against cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111703.	1.7	7
41	Regioisomers of magnesium(II) phthalocyanine bearing menthol substituents - Synthesis, spectral, electrochemical and computational studies. Dyes and Pigments, 2021, 191, 109357.	2.0	7
42	Cationic porphyrazines with morpholinoethyl substituents $\hat{a} \in \text{``Syntheses'}$, optical properties, and photocytotoxicities. Dyes and Pigments, 2022, 197, 109937.	2.0	7
43	Nipagin-Functionalized Porphyrazine and Phthalocyanine—Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25. Molecules, 2021, 26, 2657.	1.7	6
44	Photochemical properties and promising activity against staphylococci of sulfanyl porphyrazines with dendrimeric moieties. Inorganica Chimica Acta, 2021, 521, 120321.	1.2	6
45	Photochemical activity of glenvastatin, a HMG-CoA reductase inhibitor. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 224, 1-7.	2.0	4
46	Oxospirochlorins as new promising photosensitizers against priority pathogens. Dyes and Pigments, 2022, 201, 110240.	2.0	4
47	X-ray and NMR structural studies of the series of porphyrazines with peripheral pyrrolyl groups. Inorganica Chimica Acta, 2019, 484, 368-374.	1.2	3
48	Carbon nanotubes linked with pitavastatin: synthesis and characterisation. Journal of Materials Science: Materials in Medicine, 2011, 22, 845-851.	1.7	1
49	Synthesis and Physicochemical Properties of [(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-thiophen-5-yl-substituted Tetrapyrazinoporphyrazine with Magnesium(II) Ion. Applied Sciences (Switzerland), 2021, 11, 2576.	1.3	1
50	Photodynamic antimicrobial activity of magnesium(II) porphyrazine with bulky peripheral sulfanyl substituents. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-6.	0.8	1
51	New Metallophthalocyanines Bearing 2-Methylimidazole Moietiesâ€"Potential Photosensitizers against Staphylococcus aureus. International Journal of Molecular Sciences, 2022, 23, 5910.	1.8	1
52	Porphyrinoids in photodynamic diagnosis and therapy of oral diseases. , 2021, , 1-10.		0