Jeffery S Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4818834/publications.pdf

Version: 2024-02-01

304743 526287 4,717 29 22 27 h-index citations g-index papers 37 37 37 6134 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Extracellular M.Âtuberculosis DNA Targets Bacteria for Autophagy by Activating the Host DNA-Sensing Pathway. Cell, 2012, 150, 803-815.	28.9	681
2	The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. Cell Host and Microbe, 2015, 17, 811-819.	11.0	520
3	Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13001-13006.	7.1	497
4	The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature, 2013, 501, 512-516.	27.8	487
5	Mycobacterium Tuberculosis Activates the DNA-Dependent Cytosolic Surveillance Pathway within Macrophages. Cell Host and Microbe, 2012, 11, 469-480.	11.0	416
6	The Type I IFN Response to Infection with <i>Mycobacterium tuberculosis </i> Requires ESX-1-Mediated Secretion and Contributes to Pathogenesis. Journal of Immunology, 2007, 178, 3143-3152.	0.8	381
7	Architectures of Lipid Transport Systems for the Bacterial Outer Membrane. Cell, 2017, 169, 273-285.e17.	28.9	194
8	Salmonella Require the Fatty Acid Regulator PPARδ for the Establishment of a Metabolic Environment Essential for Long-Term Persistence. Cell Host and Microbe, 2013, 14, 171-182.	11.0	186
9	A Genetic Screen for Mycobacterium tuberculosis Mutants Defective for Phagosome Maturation Arrest Identifies Components of the ESX-1 Secretion System. Infection and Immunity, 2007, 75, 2668-2678.	2.2	179
10	Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host and Microbe, 2015, 18, 109-121.	11.0	174
11	ESXâ€1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Molecular Microbiology, 2009, 73, 950-962.	2.5	140
12	Structure of a PE–PPE–EspG complex from <i>Mycobacterium tuberculosis</i> reveals molecular specificity of ESX protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14758-14763.	7.1	129
13	Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion. Cell, 2015, 161, 501-512.	28.9	124
14	Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nature Communications, 2020, 11, 3382.	12.8	114
15	An Mtb-Human Protein-Protein Interaction Map Identifies a Switch between Host Antiviral and Antibacterial Responses. Molecular Cell, 2018, 71, 637-648.e5.	9.7	100
16	<i>Listeria monocytogenes</i> triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E210-E217.	7.1	70
17	Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nature Microbiology, 2019, 4, 2538-2551.	13.3	60
18	Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. ELife, 2020, 9, .	6.0	44

#	Article	IF	CITATIONS
19	Galectin-8 Senses Phagosomal Damage and Recruits Selective Autophagy Adapter TAX1BP1 To Control <i>Mycobacterium tuberculosis</i> Infection in Macrophages. MBio, 2021, 12, e0187120.	4.1	42
20	TRIM14 Is a Key Regulator of the Type I IFN Response during <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2020, 205, 153-167.	0.8	36
21	Ribosome Rescue Inhibitors Kill Actively Growing and Nonreplicating Persister <i>Mycobacterium tuberculosis</i> Cells. ACS Infectious Diseases, 2017, 3, 634-644.	3.8	32
22	Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins. Cell Reports, 2021, 35, 109105.	6.4	29
23	Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. ELife, 2019, 8, .	6.0	22
24	Ceragenins and Antimicrobial Peptides Kill Bacteria through Distinct Mechanisms. MBio, 2022, 13, e0272621.	4.1	18
25	Global post-translational modification profiling of HIV-1-infected cells reveals mechanisms of host cellular pathway remodeling. Cell Reports, 2022, 39, 110690.	6.4	12
26	Formation of Lung Inducible Bronchus Associated Lymphoid Tissue Is Regulated by Mycobacterium tuberculosis Expressed Determinants. Frontiers in Immunology, 2020, 11, 1325.	4.8	11
27	The MmpL Protein Family. , 0, , 201-210.		8
28	Organelle stress triggers inflammation. Nature, 2016, 532, 321-322.	27.8	4
29	Workshop-based learning and networking: a scalable model for research capacity strengthening in low- and middle-income countries. Global Health Action, 2022, 15, .	1.9	0