
LuÃ-sa Romão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4818771/publications.pdf Version: 2024-02-01

LUÃEN ROMÂFO

#	Article	IF	CITATIONS
1	Gene Expression Regulation by Upstream Open Reading Frames and Human Disease. PLoS Genetics, 2013, 9, e1003529.	1.5	455
2	Epidemiology of haemoglobin disorders in Europe: an overview. Scandinavian Journal of Clinical and Laboratory Investigation, 2007, 67, 39-70.	0.6	134
3	Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. Rna, 2008, 14, 563-576.	1.6	132
4	The mammalian nonsenseâ€mediated mRNA decay pathway: To decay or not to decay! Which players make the decision?. FEBS Letters, 2009, 583, 499-505.	1.3	121
5	Nonsense Mutations in Close Proximity to the Initiation Codon Fail to Trigger Full Nonsense-mediated mRNA Decay. Journal of Biological Chemistry, 2004, 279, 32170-32180.	1.6	116
6	Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Research, 2012, 40, 1160-1173.	6.5	109
7	More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cellular and Molecular Life Sciences, 2017, 74, 1659-1680.	2.4	98
8	elF3: a factor for human health and disease. RNA Biology, 2018, 15, 26-34.	1.5	70
9	The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. International Journal of Biochemistry and Cell Biology, 2017, 91, 168-175.	1.2	58
10	Control of human Â-globin mRNA stability and its impact on beta-thalassemia phenotype. Haematologica, 2011, 96, 905-913.	1.7	41
11	The canonical UPF1-dependent nonsense-mediated mRNA decay is inhibited in transcripts carrying a short open reading frame independent of sequence context. Rna, 2006, 12, 2160-2170.	1.6	40
12	Nonsense-mediated RNA decay and its bipolar function in cancer. Molecular Cancer, 2021, 20, 72.	7.9	40
13	Perspective in Alternative Splicing Coupled to Nonsense-Mediated mRNA Decay. International Journal of Molecular Sciences, 2020, 21, 9424.	1.8	39
14	Nonsense suppression therapies in human genetic diseases. Cellular and Molecular Life Sciences, 2021, 78, 4677-4701.	2.4	38
15	The role of HFE mutations on iron metabolism in beta-thalassemia carriers. Journal of Human Genetics, 2004, 49, 651-655.	1.1	34
16	Translational Regulation by Upstream Open Reading Frames and Human Diseases. Advances in Experimental Medicine and Biology, 2019, 1157, 99-116.	0.8	32
17	Resistance of mRNAs with AUG-proximal nonsense mutations to nonsense-mediated decay reflects variables of mRNA structure and translational activity. Nucleic Acids Research, 2015, 43, 6528-6544.	6.5	30
18	Translation of the human erythropoietin transcript is regulated by an upstream open reading frame in response to hypoxia. Rna, 2014, 20, 594-608.	1.6	28

LuÃsa Romão

#	Article	IF	CITATIONS
19	Mutational spectrum of delta-globin gene in the Portuguese population. European Journal of Haematology, 2007, 79, 422-428.	1.1	27
20	A new function of ROD1 in nonsenseâ€mediated mRNA decay. FEBS Letters, 2012, 586, 1101-1110.	1.3	26
21	Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. Rna, 2017, 23, 1712-1728.	1.6	22
22	Molecular Basis of A-Thalassa in Portugal. Hemoglobin, 1995, 19, 343-352.	0.4	20
23	Human alpha2-globin nonsense-mediated mRNA decay induced by a novel alpha-thalassaemia frameshift mutation at codon 22. British Journal of Haematology, 2006, 133, 98-102.	1.2	17
24	Nonsense-Mediated mRNA Decay in Development, Stress and Cancer. Advances in Experimental Medicine and Biology, 2019, 1157, 41-83.	0.8	15
25	Early modification of sickle cell disease clinical course by UDP-glucuronosyltransferase 1A1 gene promoter polymorphism. Journal of Human Genetics, 2008, 53, 524-528.	1.1	12
26	A role for DIS3L2 over natural nonsense-mediated mRNA decay targets in human cells. Biochemical and Biophysical Research Communications, 2019, 518, 664-671.	1.0	11
27	Alternative Polyadenylation and Nonsense-Mediated Decay Coordinately Regulate the Human HFE mRNA Levels. PLoS ONE, 2012, 7, e35461.	1.1	11
28	Expression of Human Hemojuvelin (HJV) Is Tightly Regulated by Two Upstream Open Reading Frames in HJV mRNA That Respond to Iron Overload in Hepatic Cells. Molecular and Cellular Biology, 2015, 35, 1376-1389.	1.1	10
29	Hb Evora [Â2-35 (B16), Ser->Pro], a novel hemoglobin variant associated with an Â-thalassemia phenotype. Haematologica, 2007, 92, 252-253.	1.7	9
30	Translation of ABCE1 Is Tightly Regulated by Upstream Open Reading Frames in Human Colorectal Cells. Biomedicines, 2021, 9, 911.	1.4	6
31	Gene Variants Involved in Nonsense-Mediated mRNA Decay Suggest a Role in Autism Spectrum Disorder. Biomedicines, 2022, 10, 665.	1.4	6
32	Unspliced Precursors of NMD-Sensitive β-Globin Transcripts Exhibit Decreased Steady-State Levels in Erythroid Cells. PLoS ONE, 2012, 7, e38505.	1.1	5
33	Comment on â€~Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease'. European Journal of Human Genetics, 2007, 15, 533-534.	1.4	4
34	<i><scp>PROS</scp>1</i> novel spliceâ€site variant decreases protein S expression in patients from two families with thrombotic disease. Clinical Case Reports (discontinued), 2017, 5, 2062-2065.	0.2	4
35	Asymptomatic homozygous deletional β0-thalassemia in an African individual. American Journal of Hematology, 2002, 70, 232-236.	2.0	3
36	Hb Yaoundé [β134(H12)Val→Ala] in Association with Hb C [β6(A3)Glu→Lys] in a Caucasian Portuguese Fam Hemoglobin, 2004, 28, 229-235.	^{1ily} 0.4	3

#	Article	IF	CITATIONS
37	COMPOUND HETEROZYGOSITY FOR Hb SPANISH TOWN [α27(B8)Gluâ†'Val], Hb S [β6(A3)Gluâ†'Val] AND THE â	à^'α(3.7)⊺ 0.4	ſj£TQq110
38	HFE gene mutations are extremely rare in Western sub-Saharan Africa. Annals of Hematology, 2005, 84, 686-688.	0.8	2
39	Hemoglobin Loves Park [β68 (E12) Leu→Phe]: Report of five cases including one originating from a de novo mutation. American Journal of Hematology, 2006, 81, 256-261.	2.0	2
40	Experimental supporting data on DIS3L2 over nonsense-mediated mRNA decay targets in human cells. Data in Brief, 2020, 28, 104943.	0.5	2