Edward D Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4818492/publications.pdf

Version: 2024-02-01

206 papers

11,679 citations

28274 55 h-index 101 g-index

224 all docs

224 docs citations

times ranked

224

9997 citing authors

#	Article	IF	CITATIONS
1	Chronic infusions of mecamylamine into the medial habenula: Effects on nicotine self-administration in rats. Behavioural Brain Research, 2022, 416, 113574.	2.2	1
2	Developmental nicotine exposure and masculinization of the rat preoptic area. NeuroToxicology, 2022, 89, 41-54.	3.0	2
3	Time-dependent effects of nicotine on reversal of dizocilpine-induced attentional impairment in female rats. Pharmacology Biochemistry and Behavior, 2022, 215, 173359.	2.9	O
4	Persistent neurobehavioral and neurochemical anomalies in middle-aged rats after maternal diazinon exposure. Toxicology, 2022, 472, 153189.	4.2	1
5	CIPHERS: Effects of male marijuana use on sperm health and potential risks to future children., 2022, 3, 100047.		O
6	Introduction to sex differences in neurotoxic effects. Neurotoxicology and Teratology, 2021, 83, 106931.	2.4	6
7	A Behavioral Test Battery to Assess Larval and Adult Zebrafish After Developmental Neurotoxic Exposure. Neuromethods, 2021, , 353-380.	0.3	1
8	Translating Neurobehavioral Toxicity Across Species From Zebrafish to Rats to Humans: Implications for Risk Assessment. Frontiers in Toxicology, 2021, 3, 629229.	3.1	20
9	Differences in Cognitive Task Performance, Reinforcement Enhancement, and Nicotine Dependence Between Menthol and Nonmenthol Cigarette Smokers. Nicotine and Tobacco Research, 2021, 23, 1902-1910.	2.6	1
10	Invited Perspective: Does Developmental Adaptation Pose Risks with Changing Toxicant Exposures?. Environmental Health Perspectives, 2021, 129, 081302.	6.0	0
11	Subchronic effects of plant alkaloids on anxiety-like behavior in zebrafish. Pharmacology Biochemistry and Behavior, 2021, 207, 173223.	2.9	10
12	The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicology and Teratology, 2021, 87, 107011.	2.4	11
13	Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. Environmental Epigenetics, 2021, 7, dvab009.	1.8	41
14	The use of tocofersolan as a rescue agent in larval zebrafish exposed to benzo[a]pyrene in early development. NeuroToxicology, 2021, 86, 78-84.	3.0	4
15	Paternal Cannabis Exposure Prior to Mating, but Not Î"9-Tetrahydrocannabinol, Elicits Deficits in Dopaminergic Synaptic Activity in the Offspring. Toxicological Sciences, 2021, 184, 252-264.	3.1	5
16	Neurobehavioral anomalies in zebrafish after sequential exposures to DDT and chlorpyrifos in adulthood: Do multiple exposures interact?. Neurotoxicology and Teratology, 2021, 87, 106985.	2.4	10
17	Differential behavioral functioning in the offspring of rats with high vs. low self-administration of the opioid agonist remifentanil. European Journal of Pharmacology, 2021, 909, 174407.	3.5	1
18	Self-administration by female rats of low doses of nicotine alone vs. nicotine in tobacco smoke extract. Drug and Alcohol Dependence, 2021, 228, 109073.	3.2	3

#	Article	IF	CITATIONS
19	Prolonging the Reduction of Nicotine Self-Administration in Rats by Coadministering Chronic Nicotine With Amitifadine, a Triple Monoamine Reuptake Inhibitor With CYP2B6 Inhibitory Actions. Nicotine and Tobacco Research, 2020, 22, 232-237.	2.6	2
20	Cannabis use is associated with potentially heritable widespread changes in autism candidate gene <i>DLGAP2</i> DNA methylation in sperm. Epigenetics, 2020, 15, 161-173.	2.7	61
21	Adult exposure to insecticides causes persistent behavioral and neurochemical alterations in zebrafish. Neurotoxicology and Teratology, 2020, 78, 106853.	2.4	16
22	Gestational and perinatal exposure to diazinon causes long-lasting neurobehavioral consequences in the rat. Toxicology, 2020, 429, 152327.	4.2	13
23	Sperm DNA methylation altered by THC and nicotine: Vulnerability of neurodevelopmental genes with bivalent chromatin. Scientific Reports, 2020, 10, 16022.	3.3	33
24	Paternal cannabis extract exposure in rats: Preconception timing effects on neurodevelopmental behavior in offspring. NeuroToxicology, 2020, 81, 180-188.	3.0	11
25	This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicology and Teratology, 2020, 81, 106916.	2.4	17
26	Measuring attention in rats with a visual signal detection task: Signal intensity vs. signal duration. Pharmacology Biochemistry and Behavior, 2020, 199, 173069.	2.9	1
27	Developmental exposure of zebrafish to vitamin D receptor acting drugs and environmental toxicants disrupts behavioral function. Neurotoxicology and Teratology, 2020, 81, 106902.	2.4	4
28	Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology, 2020, 45, 1086-1096.	5.4	39
29	Zebrafish show long-term behavioral impairments resulting from developmental vitamin D deficiency. Physiology and Behavior, 2020, 224, 113016.	2.1	5
30	Paternal factors in neurodevelopmental toxicology: THC exposure of male rats causes long-lasting neurobehavioral effects in their offspring. NeuroToxicology, 2020, 78, 57-63.	3.0	23
31	Paternal î"9-Tetrahydrocannabinol Exposure Prior to Mating Elicits Deficits in Cholinergic Synaptic Function in the Offspring. Toxicological Sciences, 2020, 174, 210-217.	3.1	17
32	Amitifadine, a triple reuptake inhibitor, reduces self-administration of the opiate remifentanil in rats. Psychopharmacology, 2020, 237, 1681-1689.	3.1	3
33	Effects of sub-chronic methylphenidate on risk-taking and sociability in zebrafish (Danio rerio). Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 1373-1381.	3.0	6
34	Dextromethorphan and bupropion reduces high level remifentanil self-administration in rats. Pharmacology Biochemistry and Behavior, 2020, 193, 172919.	2.9	5
35	Gestational exposure to nicotine and/or benzo[a]pyrene causes longâ€lasting neurobehavioral consequences. Birth Defects Research, 2019, 111, 1248-1258.	1.5	12
36	Paternal THC exposure in rats causes long-lasting neurobehavioral effects in the offspring. Neurotoxicology and Teratology, 2019, 74, 106806.	2.4	61

#	Article	lF	CITATIONS
37	Perinatal diazinon exposure compromises the development of acetylcholine and serotonin systems. Toxicology, 2019, 424, 152240.	4.2	29
38	Chronic memantine decreases nicotine self-administration in rats. European Journal of Pharmacology, 2019, 861, 172592.	3.5	3
39	Acute and chronic interactive treatments of serotonin 5HT2C and dopamine D1 receptor systems for decreasing nicotine self-administration in female rats. Pharmacology Biochemistry and Behavior, 2019, 186, 172766.	2.9	5
40	Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring. Neurotoxicology and Teratology, 2019, 74, 106808.	2.4	25
41	Oral sazetidine-A, a selective $\hat{l}\pm4\hat{l}^22^*$ nicotinic receptor desensitizing agent, reduces nicotine self-administration in rats. Pharmacology Biochemistry and Behavior, 2019, 179, 109-112.	2.9	1
42	Dopamine D1 and D2 receptor antagonism during development alters later behavior in zebrafish. Behavioural Brain Research, 2019, 356, 250-256.	2,2	15
43	$\hat{l}\pm4\hat{l}^22$ Nicotinic receptor desensitizing compounds can decrease self-administration of cocaine and methamphetamine in rats. European Journal of Pharmacology, 2019, 845, 1-7.	3.5	7
44	Persistent attenuation of nicotine self-administration in rats by co-administration of chronic nicotine infusion with the dopamine D1 receptor antagonist SCH-23390 or the serotonin 5-HT2C agonist lorcaserin. Pharmacology Biochemistry and Behavior, 2019, 176, 16-22.	2.9	13
45	The Developmental Neurotoxicity of Tobacco Smoke Can Be Mimicked by a Combination of Nicotine and Benzo[a]Pyrene: Effects on Cholinergic and Serotonergic Systems. Toxicological Sciences, 2019, 167, 293-304.	3.1	12
46	Maternal vitamin D deficiency and developmental origins of health and disease (DOHaD). Journal of Endocrinology, 2019, 241, R65-R80.	2.6	28
47	Mutually augmenting interactions of dextromethorphan and sazetidine-A for reducing nicotine self-administration in rats. Pharmacology Biochemistry and Behavior, 2018, 166, 42-47.	2.9	5
48	Neurobehavioral effects of 1,2-propanediol in zebrafish (Danio rerio). NeuroToxicology, 2018, 65, 111-124.	3.0	12
49	Sub-anesthetic doses of ketamine attenuate nicotine self-administration in rats. Neuroscience Letters, 2018, 668, 98-102.	2.1	11
50	Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae. Neurotoxicology and Teratology, 2018, 67, 25-30.	2.4	19
51	Developmental exposure to low concentrations of two brominated flame retardants, BDE-47 and BDE-99, causes life-long behavioral alterations in zebrafish. NeuroToxicology, 2018, 66, 221-232.	3.0	58
52	Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf !
53	Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics, 2018, 13, 1208-1221.	2.7	160
54	Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Science of the Total Environment, 2018, 643, 324-334.	8.0	241

#	Article	IF	Citations
55	Developmental Exposure to Low Concentrations of Organophosphate Flame Retardants Causes Life-Long Behavioral Alterations in Zebrafish. Toxicological Sciences, 2018, 165, 487-498.	3.1	55
56	Critical developmental periods for effects of low-level tobacco smoke exposure on behavioral performance. NeuroToxicology, 2018, 68, 81-87.	3.0	12
57	Outcomes of developmental exposure to total particulate matter from cigarette smoke in zebrafish (Danio rerio). NeuroToxicology, 2018, 68, 101-114.	3.0	12
58	The ventral hippocampal muscarinic cholinergic system plays a key role in sexual dimorphisms of spatial working memory in rats. Neuropharmacology, 2017, 117, 106-113.	4.1	11
59	Exposure to 1,2-Propanediol Impacts Early Development of Zebrafish (<i>Danio rerio</i>) and Induces Hyperactivity. Zebrafish, 2017, 14, 216-222.	1.1	14
60	Opioid Self-Administration is Attenuated by Early-Life Experience and Gene Therapy for Anti-Inflammatory IL-10 in the Nucleus Accumbens of Male Rats. Neuropsychopharmacology, 2017, 42, 2128-2140.	5.4	30
61	Developmental neurotoxicity of succeeding generations of insecticides. Environment International, 2017, 99, 55-77.	10.0	132
62	Differential efficacies of the nicotinic $\hat{l}\pm4\hat{l}^22$ desensitizing agents in reducing nicotine self-administration in female rats. Psychopharmacology, 2017, 234, 2517-2523.	3.1	2
63	Is There a Critical Period for the Developmental Neurotoxicity of Low-Level Tobacco Smoke Exposure?. Toxicological Sciences, 2017, 155, 75-84.	3.1	12
64	Ketamine Differentially Attenuates Alcohol Intake in Male Versus Female Alcohol Preferring (P) Rats. Journal of Drug and Alcohol Research, 2017, 6, 1-6.	0.9	23
65	Persisting neurobehavioral effects of developmental copper exposure in wildtype and metallothionein 1 and 2 knockout mice. BMC Pharmacology & Exposure in wildtype and 2 knockout mice. BMC Pharmacology & Exposure in wildtype and 2 knockout mice. BMC Pharmacology & Exposure in wildtype and Exposur	2.4	13
66	Reduction of nicotine self-administration by chronic nicotine infusion with H1 histamine blockade in female rats. Psychopharmacology, 2016, 233, 3009-3015.	3.1	6
67	Diverse neurotoxicants target the differentiation of embryonic neural stem cells into neuronal and glial phenotypes. Toxicology, 2016, 372, 42-51.	4.2	25
68	Acute oral 18-methoxycoronaridine (18-MC) decreases both alcohol intake and IV nicotine self-administration in rats. Pharmacology Biochemistry and Behavior, 2016, 150-151, 153-157.	2.9	18
69	Preclinical toxicity evaluation of a novel immunotoxin, D2C7-(scdsFv)-PE38KDEL, administered via intracerebral convection-enhanced delivery in rats. Investigational New Drugs, 2016, 34, 149-158.	2.6	10
70	Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats. Pharmacology Biochemistry and Behavior, 2016, 142, 1-7.	2.9	17
71	Cognitive and Behavioral Impairments Evoked by Low-Level Exposure to Tobacco Smoke Components: Comparison with Nicotine Alone. Toxicological Sciences, 2016, 151, 236-244.	3.1	47
72	Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish. NeuroToxicology, 2016, 52, 23-33.	3.0	39

#	Article	IF	CITATIONS
73	Learning about cognition risk with the radial-arm maze in the developmental neurotoxicology battery. Neurotoxicology and Teratology, 2015, 52, 88-92.	2.4	28
74	Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine. Neurotoxicology and Teratology, 2015, 51, 77-88.	2.4	40
75	Perspectives on zebrafish neurobehavioral pharmacology. Pharmacology Biochemistry and Behavior, 2015, 139, 93.	2.9	11
76	Bupropion–varenicline interactions and nicotine self-administration behavior in rats. Pharmacology Biochemistry and Behavior, 2015, 130, 84-89.	2.9	27
77	Prenatal nicotine changes the response to postnatal chlorpyrifos: Interactions targeting serotonergic synaptic function and cognition. Brain Research Bulletin, 2015, 111, 84-96.	3.0	17
78	Amitifadine, a triple monoamine re-uptake inhibitor, reduces nicotine self-administration in female rats. European Journal of Pharmacology, 2015, 764, 30-37.	3.5	8
79	Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicology and Teratology, 2015, 49, 81-90.	2.4	130
80	Role of nicotinic receptors in the lateral habenula in the attenuation of amphetamine-induced prepulse inhibition deficits of the acoustic startle response in rats. Psychopharmacology, 2015, 232, 3009-3017.	3.1	6
81	Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More Than Just Nicotine. Toxicological Sciences, 2015, 147, 178-189.	3.1	41
82	Amelioration strategies fail to prevent tobacco smoke effects on neurodifferentiation: Nicotinic receptor blockade, antioxidants, methyl donors. Toxicology, 2015, 333, 63-75.	4.2	11
83	Persisting effects of a PBDE metabolite, 6-OH-BDE-47, on larval and juvenile zebrafish swimming behavior. Neurotoxicology and Teratology, 2015, 52, 119-126.	2.4	39
84	Pharmacological analyses of learning and memory in zebrafish (Danio rerio). Pharmacology Biochemistry and Behavior, 2015, 139, 103-111.	2.9	44
85	Neuro-anatomic mapping of dopamine D1 receptor involvement in nicotine self-administration in rats. Neuropharmacology, 2015, 99, 689-695.	4.1	24
86	Heterogeneity Across Brain Regions and Neurotransmitter Interactions with Nicotinic Effects on Memory Function. Current Topics in Behavioral Neurosciences, 2015, 23, 87-101.	1.7	14
87	Effects of tobacco smoke constituents, anabasine and anatabine, on memory and attention in female rats. Journal of Psychopharmacology, 2014, 28, 915-922.	4.0	25
88	Meclizine Enhancement of Sensorimotor Gating in Healthy Male Subjects with High Startle Responses and Low Prepulse Inhibition. Neuropsychopharmacology, 2014, 39, 651-659.	5.4	1
89	IV nicotine self-administration in rats using a consummatory operant licking response: Sensitivity to serotonergic, glutaminergic and histaminergic drugs. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 54, 200-205.	4.8	15
90	Assessment of pregnenolone effects on alcohol intake and preference in male alcohol preferring (P) rats. European Journal of Pharmacology, 2014, 740, 53-57.	3.5	5

#	Article	IF	Citations
91	Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats. European Journal of Pharmacology, 2014, 741, 132-139.	3.5	14
92	Lorcaserin, a selective 5-HT 2C receptor agonist, decreases alcohol intake in female alcohol preferring rats. Pharmacology Biochemistry and Behavior, 2014, 125, 8-14.	2.9	51
93	Nicotinic Attention-Deficit/Hyperactivity Disorder Treatment. Biological Psychiatry, 2014, 75, 174.	1.3	0
94	Effects of tobacco smoke on PC12 cell neurodifferentiation are distinct from those of nicotine or benzo[a]pyrene. Neurotoxicology and Teratology, 2014, 43, 19-24.	2.4	17
95	Prenatal dexamethasone augments the neurobehavioral teratology of chlorpyrifos: Significance for maternal stress and preterm labor. Neurotoxicology and Teratology, 2014, 41, 35-42.	2.4	15
96	Differential effects of non-nicotine tobacco constituent compounds on nicotine self-administration in rats. Pharmacology Biochemistry and Behavior, 2014, 120, 103-108.	2.9	48
97	Complex relationships of nicotinic receptor actions and cognitive functions. Biochemical Pharmacology, 2013, 86, 1145-1152.	4.4	67
98	Effects of the sazetidine-a family of compounds on the body temperature in wildtype, nicotinic receptor $\hat{l}^22\hat{a}^2/\hat{a}^2$ and $\hat{l}\pm7\hat{a}^2/\hat{a}^2$ mice. European Journal of Pharmacology, 2013, 718, 167-172.	3.5	2
99	Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Research Part C: Embryo Today Reviews, 2013, 99, 14-23.	3.6	143
100	Improvement of attentional function with antagonism of nicotinic receptors in female rats. European Journal of Pharmacology, 2013, 702, 269-274.	3.5	27
101	?7-Nicotinic Receptors and Cognition. Current Drug Targets, 2012, 13, 602-606.	2.1	73
102	Assessing the effects of chronic sazetidine-A delivery on nicotine self-administration in both male and female rats. Psychopharmacology, 2012, 222, 269-276.	3.1	35
103	Differential effects of the antidepressant mirtazapine on amphetamine- and dizocilpine-induced PPI deficits. Pharmacology Biochemistry and Behavior, 2012, 102, 82-87.	2.9	3
104	The $\hat{l}\pm 2$ -adrenergic antagonist idazoxan counteracts prepulse inhibition deficits caused by amphetamine or dizocilpine in rats. Psychopharmacology, 2012, 219, 99-108.	3.1	11
105	Threshold of adulthood for the onset of nicotine self-administration in male and female rats. Behavioural Brain Research, 2011, 225, 473-481.	2.2	42
106	Silver exposure in developing zebrafish produces persistent synaptic and behavioral changes. Neurotoxicology and Teratology, 2011, 33, 329-332.	2.4	39
107	Persistent behavioral impairment caused by embryonic methylphenidate exposure in zebrafish. Neurotoxicology and Teratology, 2011, 33, 668-673.	2.4	47
108	Introduction to zebrafish: Current discoveries and emerging technologies for neurobehavioral toxicology and teratology. Neurotoxicology and Teratology, 2011, 33, 607.	2.4	9

#	Article	IF	Citations
109	D-cycloserine selectively decreases nicotine self-administration in rats with low baseline levels of response. Pharmacology Biochemistry and Behavior, 2011, 98, 210-214.	2.9	12
110	Attention-modulating effects of cognitive enhancers. Pharmacology Biochemistry and Behavior, 2011, 99, 146-154.	2.9	47
111	Histamine H1 antagonist treatment with pyrilamine reduces nicotine self-administration in rats. European Journal of Pharmacology, 2011, 650, 256-260.	3.5	22
112	Lorcaserin, a 5-HT _{2C} Agonist, Decreases Nicotine Self-Administration in Female Rats. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 890-896.	2.5	83
113	Zebrafish assessment of cognitive improvement and anxiolysis: filling the gap between in vitro in vitr	2.9	61
114	Effects of sazetidine-A, a selective $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptor desensitizing agent on alcohol and nicotine self-administration in selectively bred alcohol-preferring (P) rats. Psychopharmacology, 2010, 211, 161-174.	3.1	86
115	PPI deficit induced by amphetamine is attenuated by the histamine H1 antagonist pyrilamine, but is exacerbated by the serotonin 5-HT2 antagonist ketanserin. Psychopharmacology, 2010, 212, 551-558.	3.1	9
116	Hippocampal infusions of MARCKS peptides impair memory of rats on the radial-arm maze. Brain Research, 2010, 1308, 147-152.	2.2	12
117	Sazetidine-A, a Selective $\hat{l}\pm4\hat{l}^22$ Nicotinic Receptor Desensitizing Agent and Partial Agonist, Reduces Nicotine Self-Administration in Rats. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 933-939.	2.5	66
118	IV nicotine self-administration in rats using the consummatory operant licking response. Physiology and Behavior, 2010, 101, 755-758.	2.1	6
119	Early postnatal parathion exposure in rats causes sex-selective cognitive impairment and neurotransmitter defects which emerge in aging. Behavioural Brain Research, 2010, 208, 319-327.	2.2	61
120	Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacology Biochemistry and Behavior, 2009, 94, 75-80.	2.9	346
121	Nicotinic antagonist effects in the mediodorsal thalamic nucleus: Regional heterogeneity of nicotinic receptor involvement in cognitive function. Biochemical Pharmacology, 2009, 78, 788-794.	4.4	23
122	Nicotine effects on learning in zebrafish: the role of dopaminergic systems. Psychopharmacology, 2009, 202, 103-109.	3.1	87
123	The toxicology of climate change: Environmental contaminants in a warming world. Environment International, 2009, 35, 971-986.	10.0	881
124	Hippocampal infusions of apolipoprotein E peptides induce long-lasting cognitive impairment. Brain Research Bulletin, 2009, 79, 111-115.	3.0	9
125	Nicotinic \hat{l} ±7- or \hat{l} 2-containing receptor knockout: Effects on radial-arm maze learning and long-term nicotine consumption in mice. Behavioural Brain Research, 2009, 196, 207-213.	2,2	111
126	Chronic underactivity of medial frontal cortical \hat{I}^2 2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 296-302.	4.8	9

#	Article	IF	Citations
127	Genetic aspects of behavioral neurotoxicology. NeuroToxicology, 2009, 30, 741-753.	3.0	27
128	Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats. European Journal of Pharmacology, 2008, 600, 93-97.	3.5	40
129	Persistent cognitive alterations in rats after early postnatal exposure to low doses of the organophosphate pesticide, diazinon. Neurotoxicology and Teratology, 2008, 30, 38-45.	2.4	127
130	Developmental diazinon neurotoxicity in rats: Later effects on emotional response. Brain Research Bulletin, 2008, 75, 166-172.	3.0	107
131	Developmental neurotoxicity of low dose diazinon exposure of neonatal rats: Effects on serotonin systems in adolescence and adulthood. Brain Research Bulletin, 2008, 75, 640-647.	3.0	75
132	Persistent behavioral alterations in rats neonatally exposed to low doses of the organophosphate pesticide, parathion. Brain Research Bulletin, 2008, 77, 404-411.	3.0	87
133	Neonatal Exposure to Low Doses of Diazinon: Long-Term Effects on Neural Cell Development and Acetylcholine Systems. Environmental Health Perspectives, 2008, 116, 340-348.	6.0	80
134	Anxiolytic effects of nicotine in zebrafish. Physiology and Behavior, 2007, 90, 54-58.	2.1	521
135	Nicotinic interactions with antipsychotic drugs, models of schizophrenia and impacts on cognitive function. Biochemical Pharmacology, 2007, 74, 1182-1191.	4.4	108
136	Interaction of nicotinic and histamine H3 systems in the radial-arm maze repeated acquisition task. European Journal of Pharmacology, 2007, 569, 64-69.	3.5	14
137	Clozapine treatment reverses dizocilpine-induced deficits of pre-pulse inhibition of tactile startle response. Pharmacology Biochemistry and Behavior, 2007, 86, 597-605.	2.9	19
138	Histamine H1 receptor involvement in prepulse inhibition and memory function: Relevance for the antipsychotic actions of clozapine. Pharmacology Biochemistry and Behavior, 2007, 86, 686-692.	2.9	19
139	Adolescent vs. adult-onset nicotine self-administration in male rats: Duration of effect and differential nicotinic receptor correlates. Neurotoxicology and Teratology, 2007, 29, 458-465.	2.4	127
140	Metallothionein expression and neurocognitive function in mice. Physiology and Behavior, 2006, 87, 513-518.	2.1	27
141	Effects of clozapine on memory function in the rat neonatal hippocampal lesion model of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 223-229.	4.8	31
142	Low-dose mecamylamine improves learning of rats in the radial-arm maze repeated acquisition procedure. Neurobiology of Learning and Memory, 2006, 86, 117-122.	1.9	36
143	Timing of nicotine effects on learning in zebrafish. Psychopharmacology, 2006, 184, 547-552.	3.1	94
144	Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology, 2006, 184, 523-539.	3.1	711

#	Article	IF	CITATIONS
145	Ventral hippocampal $\hat{l}\pm7$ and $\hat{l}\pm4\hat{l}^22$ nicotinic receptor blockade and clozapine effects on memory in female rats. Psychopharmacology, 2006, 188, 597-604.	3.1	29
146	Persistent neurobehavioral effects of early postnatal domoic acid exposure in rats. Neurotoxicology and Teratology, 2006, 28, 673-680.	2.4	40
147	Increased nicotine self-administration following prenatal exposure in female rats. Pharmacology Biochemistry and Behavior, 2006, 85, 669-674.	2.9	76
148	Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition. Environmental Health Perspectives, 2006, 114, 1542-1546.	6.0	107
149	The rationale for studying transmitter interactions to understand the neural bases of cognitive function., 2006, 98, 1-3.		2
150	Nicotinic-antipsychotic drug interactions and cognitive function., 2006, 98, 185-205.		27
151	Chronic nicotine and dizocilpine effects on regionally specific nicotinic and NMDA glutamate receptor binding. Brain Research, 2005, 1041, 132-142.	2.2	28
152	Olanzapine interactions with nicotine and mecamylamine in rats: Effects on memory function. Neurotoxicology and Teratology, 2005, 27, 459-464.	2.4	25
153	Persisting behavioral consequences of prenatal domoic acid exposure in rats. Neurotoxicology and Teratology, 2005, 27, 719-725.	2.4	78
154	Ketanserin attenuates nicotine-induced working memory improvement in rats. Pharmacology Biochemistry and Behavior, 2005, 82, 289-292.	2.9	29
155	Fetal nicotinic overload, blunted sympathetic responsivity, and obesity. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 481-484.	1.6	30
156	Memory Decline of Aging Reduced by Extracellular Superoxide Dismutase Overexpression. Behavior Genetics, 2005, 35, 447-453.	2.1	22
157	Extracellular Superoxide Dismutase (EC-SOD) Quenches Free Radicals and Attenuates Age-Related Cognitive Decline: Opportunities for Novel Drug Development in Aging. Current Alzheimer Research, 2005, 2, 191-196.	1.4	34
158	Nicotine and clozapine actions on pre-pulse inhibition deficits caused by N-methyl-d-aspartate (NMDA) glutamatergic receptor blockade. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, 29, 581-586.	4.8	35
159	Neurobehavioral assessment of mice after developmental AZT exposure. Neurotoxicology and Teratology, 2004, 26, 65-71.	2.4	4
160	The use of zebrafish (Danio rerio) as a model system in neurobehavioral toxicology. Neurotoxicology and Teratology, 2004, 26, 707-708.	2.4	23
161	Nicotinic involvement in memory function in zebrafish. Neurotoxicology and Teratology, 2004, 26, 731-735.	2.4	131
162	Developmental chlorpyrifos effects on hatchling zebrafish swimming behavior. Neurotoxicology and Teratology, 2004, 26, 719-723.	2.4	127

#	Article	IF	CITATIONS
163	Baclofen interactions with nicotine in rats: effects on memory. Pharmacology Biochemistry and Behavior, 2004, 79, 343-348.	2.9	30
164	Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment. Psychopharmacology, 2004, 171, 465-471.	3.1	101
165	Adolescent-onset nicotine self-administration modeled in female rats. Psychopharmacology, 2003, 169, 141-149.	3.1	188
166	Nicotinic mechanisms of memory: effects of acute local DH \hat{I}^2 E and MLA infusions in the basolateral amygdala. Cognitive Brain Research, 2003, 16, 51-57.	3.0	64
167	NMDA systems in the amygdala and piriform cortex and nicotinic effects on memory function. Cognitive Brain Research, 2003, 17, 475-483.	3.0	18
168	Chlorpyrifos exposure of developing zebrafish: effects on survival and long-term effects on response latency and spatial discrimination. Neurotoxicology and Teratology, 2003, 25, 51-57.	2.4	156
169	Learning impairment caused by a toxin produced by Pfiesteria piscicida infused into the hippocampus of rats. Neurotoxicology and Teratology, 2003, 25, 419-426.	2.4	16
170	Lobeline-induced learning improvement of rats in the radial-arm maze. Pharmacology Biochemistry and Behavior, 2003, 76, 133-139.	2.9	17
171	Ventral hippocampal NMDA blockade and nicotinic effects on memory function. Brain Research Bulletin, 2003, 61, 489-495.	3.0	36
172	Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicology and Teratology, 2002, 24, 733-741.	2.4	212
173	Nicotinic receptor subtypes and cognitive function. Journal of Neurobiology, 2002, 53, 633-640.	3.6	324
174	Persistence of nicotinic agonist RJR 2403-induced working memory improvement in rats. Drug Development Research, 2002, 55, 97-103.	2.9	30
175	Extracellular superoxide dismutase overexpression protects against aging-induced cognitive impairment in mice. Behavior Genetics, 2002, 32, 119-125.	2.1	30
176	Effects of chronic nicotine and methylphenidate in adults with attention deficit/hyperactivity disorder Experimental and Clinical Psychopharmacology, 2001, 9, 83-90.	1.8	147
177	Spatial and non-spatial visual discrimination learning in zebrafish (Danio rerio). Animal Cognition, 2001, 4, 125-131.	1.8	95
178	Persistent behavioral consequences of neonatal chlorpyrifos exposure in rats. Developmental Brain Research, 2001, 130, 83-89.	1.7	203
179	Ventral hippocampal α7 nicotinic receptor blockade and chronic nicotine effects on memory performance in the radial-arm maze. Pharmacology Biochemistry and Behavior, 2001, 70, 467-474.	2.9	82
180	Binge Pattern Ethanol Exposure in Adolescent and Adult Rats: Differential Impact on Subsequent Responsiveness to Ethanol. Alcoholism: Clinical and Experimental Research, 2000, 24, 1251-1256.	2.4	198

#	Article	IF	CITATIONS
181	Development of nicotinic drug therapy for cognitive disorders. European Journal of Pharmacology, 2000, 393, 141-146.	3.5	145
182	Molecular overexpression of extracellular superoxide dismutase increases the dependency of learning and memory performance on motivational state. Behavior Genetics, 2000, 30, 95-100.	2.1	13
183	The nicotinic antagonist mecamylamine preferentially inhibits cocaine vs. food self-administration in rats. Physiology and Behavior, 2000, 71, 565-570.	2.1	68
184	Binge Pattern Ethanol Exposure in Adolescent and Adult Rats: Differential Impact on Subsequent Responsiveness to Ethanol. Alcoholism: Clinical and Experimental Research, 2000, 24, 1251-1256.	2.4	5
185	Bridged nicotine, isonicotine, and norisonicotine effects on working memory performance of rats in the radial-arm maze. Drug Development Research, 1999, 46, 107-111.	2.9	18
186	Mutually potentiating effects of mecamylamine and haloperidol in producing catalepsy in rats. Drug Development Research, 1999, 47, 90-96.	2.9	11
187	Molecular manipulations of extracellular superoxide dismutase: functional importance for learning. Behavior Genetics, 1998, 28, 381-390.	2.1	67
188	Developmental Neurotoxicity of Nicotine. , 1998, , 587-615.		34
189	Nicotinic System Involvement in Alzheimer??s and Parkinson??s Diseases. Drugs and Aging, 1997, 11, 206-228.	2.7	229
190	Chronic nicotine working and reference memory effects in the 16-arm radial maze: interactions with D1 agonist and antagonist drugs. Psychopharmacology, 1996, 127, 25-30.	3.1	78
191	Prenatal nicotine effects on memory in rats: pharmacological and behavioral challenges. Developmental Brain Research, 1996, 97, 207-215.	1.7	128
192	Nicotinic agonist and antagonist effects on memory. Drug Development Research, 1996, 38, 188-195.	2.9	26
193	Chronic nicotine-induced improvement of spatial working memory and D2 dopamine effects in rats. Drug Development Research, 1996, 39, 29-35.	2.9	18
194	Smoking in Vietnam combat veterans with post-traumatic stress disorder. Journal of Traumatic Stress, 1995, 8, 461-472.	1.8	134
195	Triphenyl phosphiteâ€induced impairment of spatial alternation learning. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1995, 44, 461-467.	2.3	5
196	Smoking in vietnam combat veterans with post-traumatic stress disorder. Journal of Traumatic Stress, 1995, 8, 461-472.	1.8	73
197	Promise of nicotinic-based therapeutic treatments. Drug Development Research, 1994, 31, 1-2.	2.9	9
198	Intracerebroventricular nicotine and mecamylamine alter radial-arm maze performance in rats. Drug Development Research, 1994, 31, 18-23.	2.9	18

#	Article	IF	CITATIONS
199	Nicotine interactions with dopamine agonists: Effects on working memory function. Drug Development Research, 1994, 31, 32-37.	2.9	28
200	Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clinical Pharmacology and Therapeutics, 1994, 56, 86-99.	4.7	225
201	Longâ€ŧerm neurobehavioral effects of perinatal polychlorinated biphenyl (PCB) exposure in monkeys. Environmental Toxicology and Chemistry, 1991, 10, 747-756.	4.3	94
202	LONG-TERM NEUROBEHAVIORAL EFFECTS OF PERINATAL POLYCHLORINATED BIPHENYL (PCB) EXPOSURE IN MONKEYS. Environmental Toxicology and Chemistry, 1991, 10, 747.	4.3	1
203	Transdermal nicotine facilitates smoking cessation. Clinical Pharmacology and Therapeutics, 1990, 47, 323-330.	4.7	129
204	Chronic neuroleptic effects on spatial reversal learning in monkeys. Psychopharmacology, 1989, 97, 496-500.	3.1	7
205	Characteristics of oral movements in rats during and after chronic haloperidol and fluphenazine administration. Psychopharmacology, 1988, 94, 421-7.	3.1	31
206	A visual exploration apparatus for infant monkeys. American Journal of Primatology, 1986, 10, 195-199.	1.7	8