List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/481810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nature Methods, 2008, 5, 687-694.	9.0	576
2	Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO Journal, 2006, 25, 3245-3256.	3.5	443
3	Fluorescence Correlation Spectroscopy Diffusion Laws to Probe the Submicron Cell Membrane Organization. Biophysical Journal, 2005, 89, 4029-4042.	0.2	407
4	Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 2013, 7, 6478-6488.	7.3	351
5	A plasmonic â€~antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nature Nanotechnology, 2013, 8, 512-516.	15.6	297
6	Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination. Journal of Physical Chemistry C, 2014, 118, 4890-4898.	1.5	273
7	Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation. Nature Chemical Biology, 2008, 4, 538-547.	3.9	270
8	Dynamics in the plasma membrane: how to combine fluidity and order. EMBO Journal, 2006, 25, 3446-3457.	3.5	259
9	Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations. Nano Letters, 2011, 11, 637-644.	4.5	258
10	Femtosecond-pulsed optical heating of gold nanoparticles. Physical Review B, 2011, 84, .	1.1	247
11	Direct imaging of photonic nanojets. Optics Express, 2008, 16, 6930.	1.7	240
12	Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures. Physical Review Letters, 2005, 95, 117401.	2.9	211
13	A critique of methods for temperature imaging in single cells. Nature Methods, 2014, 11, 899-901.	9.0	211
14	All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. Nano Letters, 2016, 16, 5143-5151.	4.5	197
15	Specific Docking of Apolipoprotein A-I at the Cell Surface Requires a Functional ABCA1 Transporter. Journal of Biological Chemistry, 2001, 276, 9955-9960.	1.6	189
16	Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis. ACS Nano, 2012, 6, 2452-2458.	7.3	188
17	Plasmonic Antennas for Directional Sorting of Fluorescence Emission. Nano Letters, 2011, 11, 2400-2406.	4.5	177
18	Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization. Biophysical Journal, 2007, 92, 913-919.	0.2	154

#	Article	IF	CITATIONS
19	Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement. ACS Nano, 2009, 3, 2043-2048.	7.3	152
20	Three-dimensional subwavelength confinement of light with dielectric microspheres. Optics Express, 2009, 17, 2089.	1.7	124
21	Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures. Optics Express, 2008, 16, 3008.	1.7	122
22	Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Optics Letters, 2011, 36, 2387.	1.7	119
23	High-resolution multimodal flexible coherent Raman endoscope. Light: Science and Applications, 2018, 7, 10.	7.7	116
24	In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement. Nano Letters, 2017, 17, 1703-1710.	4.5	114
25	Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations. ACS Photonics, 2015, 2, 1099-1107.	3.2	105
26	Widefield lensless imaging through a fiber bundle via speckle correlations. Optics Express, 2016, 24, 16835.	1.7	99
27	Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Optics Express, 2008, 16, 15297.	1.7	97
28	Background-Free Stimulated Raman Spectroscopy and Microscopy. Physical Review Letters, 2014, 112, 053905.	2.9	93
29	Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals. Physical Review B, 2008, 77, .	1.1	88
30	Modal analysis of spontaneous emission in a planar microcavity. Physical Review A, 1996, 54, 2356-2368.	1.0	86
31	Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Nano Letters, 2015, 15, 6193-6201.	4.5	85
32	Surface plasmon excitation on a single subwavelength hole in a metallic sheet. Applied Optics, 2005, 44, 2332.	2.1	80
33	Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp. Optics Letters, 2011, 36, 707.	1.7	74
34	Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle. Optics Letters, 2013, 38, 609.	1.7	73
35	Plasmonic Nanoantennas Enable Forbidden Förster Dipole–Dipole Energy Transfer and Enhance the FRET Efficiency. Nano Letters, 2016, 16, 6222-6230.	4.5	73
36	Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna. Advanced Materials, 2012, 24, OP314-20.	11.1	72

#	Article	IF	CITATIONS
37	Mapping the Local Organization of Cell Membranes Using Excitation-Polarization-Resolved Confocal Fluorescence Microscopy. Biophysical Journal, 2013, 105, 127-136.	0.2	72
38	Two-photon lensless endoscope. Optics Express, 2013, 21, 20713.	1.7	71
39	Single molecule fluorescence in rectangular nano-apertures. Optics Express, 2005, 13, 7035.	1.7	68
40	Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1473.	0.9	65
41	Generic model of the molecular orientational distribution probed by polarization-resolved second-harmonic generation. Physical Review A, 2012, 85, .	1.0	65
42	Reply to: "Validating subcellular thermal changes revealed by fluorescent thermosensors" and "The 105 gap issue between calculation and measurement in single-cell thermometry". Nature Methods, 2015, 12, 803-803.	9.0	65
43	Tutorial: Coherent Raman light matter interaction processes. APL Photonics, 2018, 3, .	3.0	63
44	Roadmap on biosensing and photonics with advanced nano-optical methods. Journal of Optics (United) Tj ETQ	q0 0.0 rgB1	/Overlock 10
45	Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy. Optics Letters, 2012, 37, 4371.	1.7	58
46	Wavefront sensing with a thin diffuser. Optics Letters, 2017, 42, 5117.	1.7	58
47	Dipole radiation into grating structures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1048.	0.8	57
48	Double-clad hollow core photonic crystal fiber for coherent Raman endoscope. Optics Express, 2011, 19, 12562.	1.7	57
49	Plasmonic antennas and zeroâ€mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy toward physiological concentrations. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 268-282.	3.3	53
50	Light-Assisted Solvothermal Chemistry Using Plasmonic Nanoparticles. ACS Omega, 2016, 1, 2-8.	1.6	53
51	Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture. Scientific Reports, 2015, 5, 15852.	1.6	50
52	Field enhancement in single subwavelength apertures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 2342.	0.8	49
53	Optical-fiber-microsphere for remote fluorescence correlation spectroscopy. Optics Express, 2009, 17, 19085.	1.7	48
54	Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations. Optics Express, 2006, 14, 12206.	1.7	47

#	Article	IF	CITATIONS
55	Fast stimulated Raman and second harmonic generation imaging for intraoperative gastro-intestinal cancer detection. Scientific Reports, 2019, 9, 10052.	1.6	47
56	Radiative and guided wave emission ofEr3+satoms located in planar multidielectric structures. Physical Review A, 1997, 55, 1497-1502.	1.0	46
57	Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview. Journal of Biomedical Optics, 2011, 16, 1.	1.4	45
58	Disposable Microscope Objective Lenses for Fluorescence Correlation Spectroscopy Using Latex Microspheres. Analytical Chemistry, 2008, 80, 6800-6804.	3.2	44
59	Nanoaperture-Enhanced Signal-to-Noise Ratio in Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2009, 81, 834-839.	3.2	44
60	Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives. Journal of Biomedical Optics, 2016, 21, 121506.	1.4	44
61	Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection. International Journal of Molecular Sciences, 2010, 11, 206-221.	1.8	43
62	Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells. Nano Letters, 2017, 17, 6295-6302.	4.5	43
63	Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica, 2019, 6, 1185.	4.8	43
64	Noise in stimulated Raman scattering measurement: From basics to practice. APL Photonics, 2020, 5, 011101.	3.0	42
65	Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes. Journal of Physical Chemistry Letters, 2018, 9, 110-119.	2.1	41
66	FCS Diffusion Laws in Two-Phase Lipid Membranes: Determination ofÂDomain Mean Size by Experiments and Monte Carlo Simulations. Biophysical Journal, 2011, 100, 1242-1251.	0.2	40
67	Stimulated Raman histology: one to one comparison with standard hematoxylin and eosin staining. Biomedical Optics Express, 2019, 10, 5378.	1.5	40
68	Enhanced second-harmonic generation from individual metallic nanoapertures. Optics Letters, 2010, 35, 4063.	1.7	39
69	Deterministic temperature shaping using plasmonic nanoparticle assemblies. Nanoscale, 2014, 6, 8984-8989.	2.8	39
70	Direct imaging of molecular symmetry by coherent anti-stokes Raman scattering. Nature Communications, 2016, 7, 11562.	5.8	39
71	Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas. ACS Nano, 2017, 11, 7241-7250.	7.3	39
72	Extraction of light from sources located inside waveguide grating structures. Optics Letters, 1999, 24, 148.	1.7	38

#	Article	IF	CITATIONS
73	Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration. Optics Express, 2013, 21, 27338.	1.7	38
74	Single-Fluorophore Diffusion in a Lipid Membrane over a Subwavelength Aperture. Journal of Biological Physics, 2006, 32, SN1-SN4.	0.7	37
75	Surface Enhanced Raman Scattering on a Single Nanometric Aperture. Journal of Physical Chemistry C, 2010, 114, 16250-16256.	1.5	37
76	Thioflavine-T and Congo Red Reveal the Polymorphism of Insulin Amyloid Fibrils When Probed by Polarization-Resolved Fluorescence Microscopy. Journal of Physical Chemistry B, 2013, 117, 784-788.	1.2	37
77	Single-shot polarimetry imaging of multicore fiber. Optics Letters, 2016, 41, 2105.	1.7	37
78	Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber. Optics Express, 2016, 24, 825.	1.7	37
79	Programmable single-pixel-based broadband stimulated Raman scattering. Optics Letters, 2017, 42, 1696.	1.7	37
80	Spontaneous emission properties of color centers based optical microcavities. Optics Communications, 2001, 189, 281-287.	1.0	36
81	Photothermal Control of Heatâ€Shock Protein Expression at the Single Cell Level. Small, 2018, 14, e1801910.	5.2	36
82	All-fiber spectral compression of picosecond pulses at telecommunication wavelength enhanced by amplitude shaping. Applied Optics, 2012, 51, 4547.	0.9	35
83	Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber. Optics Letters, 2016, 41, 3531.	1.7	35
84	Colloidal Quantum Dots as Probes of Excitation Field Enhancement in Photonic Antennas. ACS Nano, 2010, 4, 4571-4578.	7.3	34
85	Time-harmonic optical heating of plasmonic nanoparticles. Physical Review B, 2014, 90, .	1.1	34
86	Assessment of Compressive Raman versus Hyperspectral Raman for Microcalcification Chemical Imaging. Analytical Chemistry, 2018, 90, 7197-7203.	3.2	34
87	Spontaneous emission into planar multi-dielectric microcavities: Theoretical and experimental analysis of rare earth ion radiations. Optical Materials, 1999, 11, 167-180.	1.7	33
88	Flow Profiles and Directionality in Microcapillaries Measured by Fluorescence Correlation Spectroscopy. Single Molecules, 2002, 3, 194-200.	1.6	32
89	Refractive effects in coherent anti-Stokes Raman scattering microscopy. Applied Optics, 2006, 45, 7005.	2.1	32
90	Quantitative 3D molecular cutaneous absorption in human skin using label free nonlinear microscopy. Journal of Controlled Release, 2015, 200, 78-86.	4.8	31

#	Article	IF	CITATIONS
91	Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy. Physical Review A, 2014, 89, .	1.0	30
92	Lipid Order Degradation in Autoimmune Demyelination Probed by Polarized Coherent Raman Microscopy. Biophysical Journal, 2017, 113, 1520-1530.	0.2	30
93	High Order Symmetry Structural Properties of Vibrational Resonances Using Multiple-Field Polarization Coherent Anti-Stokes Raman Spectroscopy Microscopy. Physical Review Letters, 2010, 105, 123903.	2.9	29
94	Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging. Physical Review A, 2010, 81, .	1.0	29
95	Molecular Orientational Order Probed by Coherent Anti-Stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) Microscopy: A Spectral Comparative Study. Journal of Physical Chemistry B, 2015, 119, 3242-3249.	1.2	29
96	Fluorescence imaging of submicrometric lattices of colour centres in LiF by an apertureless scanning near-field optical microscope. Optics Express, 2001, 9, 353.	1.7	28
97	Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects. Optics Express, 2007, 15, 10408.	1.7	28
98	Field enhancement in a circular aperture surrounded by a single channel groove. Optics Express, 2008, 16, 2276.	1.7	28
99	Spontaneous emission properties of Pr ions located in planar dielectric microcavities. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1773.	0.9	27
100	Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571, 177-181.	0.7	27
101	Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations. Optics Express, 2011, 19, 13056.	1.7	27
102	Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures. Applied Physics Letters, 2002, 80, 4106-4108.	1.5	26
103	Quantitative absorption spectroscopy of nano-objects. Physical Review B, 2012, 86, .	1.1	26
104	Widefield lensless endoscopy with a multicore fiber. Optics Letters, 2016, 41, 4771.	1.7	26
105	Nonlinear imaging through a Fermat's golden spiral multicore fiber. Optics Letters, 2018, 43, 3638.	1.7	26
106	Probing Orientational Behavior of MHC Class I Protein and Lipid Probes in Cell Membranes by Fluorescence Polarization-Resolved Imaging. Biophysical Journal, 2011, 101, 468-476.	0.2	25
107	Hollow-core photonic crystal fiber probe for remote fluorescence sensing with single molecule sensitivity. Optics Express, 2012, 20, 28379.	1.7	25
108	Effects of Excitonic Resonance on Second and Third Order Nonlinear Scattering from Few-Layer MoS ₂ . ACS Photonics, 2018, 5, 1235-1240.	3.2	25

#	Article	IF	CITATIONS
109	Fluorescence of Ta_2O_5 thin films doped by kilo-electron-volt Er implantation: application to microcavities. Applied Optics, 1996, 35, 5005.	2.1	24
110	Raman scattering and fluorescence emission in a single nanoaperture: Optimizing the local intensity enhancement. Optics Communications, 2006, 267, 224-228.	1.0	24
111	<i>In vivo</i> single human sweat gland activity monitoring using coherent anti-Stokes Raman scattering and two-photon excited autofluorescence microscopy. British Journal of Dermatology, 2016, 174, 803-812.	1.4	24
112	In vivo quantitative molecular absorption of glycerol in human skin using coherent anti-Stokes Raman scattering (CARS) and two-photon auto-fluorescence. Journal of Controlled Release, 2019, 308, 190-196.	4.8	24
113	Radiative and Nonradiative Photokinetics Alteration Inside a Single Metallic Nanometric Aperture. Journal of Physical Chemistry C, 2007, 111, 11469-11474.	1.5	23
114	Three-dimensional temperature imaging around a gold microwire. Applied Physics Letters, 2013, 102, 244103.	1.5	23
115	Spectral Analog of the Gouy Phase Shift. Physical Review Letters, 2013, 110, 143902.	2.9	22
116	Nonlinear totally reflecting prism coupler: thermomechanic effects and intensity-dependent refractive index of thin films. Applied Optics, 1995, 34, 4358.	2.1	21
117	Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1221.	0.9	21
118	Revisiting the Young's Double Slit Experiment for Background-Free Nonlinear Raman Spectroscopy and Microscopy. Physical Review Letters, 2010, 104, 213905.	2.9	20
119	Fluorescence correlation spectroscopy to determine diffusion laws: application to live cell membranes. , 2004, , .		19
120	Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 339.	0.8	19
121	Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line. Optics Letters, 2017, 42, 294.	1.7	19
122	Simultaneous dual-channel stimulated Raman scattering microscopy demultiplexed at distinct modulation frequencies. Optics Letters, 2018, 43, 3582.	1.7	19
123	Spatial frequency modulated imaging in coherent anti-Stokes Raman microscopy. Optica, 2020, 7, 417.	4.8	19
124	Waveguiding pulsed laser deposited Ti:sapphire layers on quartz. Thin Solid Films, 1998, 322, 259-262.	0.8	18
125	Far-field radiation from quantum boxes located in pillar microcavities. Optics Letters, 2001, 26, 1595.	1.7	18
126	Control of F2 color centers spontaneous emission in LiF thin films inside optical microcavities. Optical Materials, 2001, 16, 63-67.	1.7	18

#	Article	IF	CITATIONS
127	Fluorescence correlation spectroscopy on a mirror. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2203.	0.9	18
128	Precision of proportion estimation with binary compressed Raman spectrum. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 125.	0.8	18
129	Discriminating polymorph distributions in pharmaceutical tablets using stimulated Raman scattering microscopy. Journal of Raman Spectroscopy, 2019, 50, 1896-1904.	1.2	18
130	Guided-wave characterization techniques for the comparison of properties of different optical coatings. Optical Engineering, 1994, 33, 1669.	0.5	17
131	Fluorescence fluctuations analysis in nanoapertures: physical concepts and biological applications. Histochemistry and Cell Biology, 2008, 130, 795-805.	0.8	17
132	Wide-Field Vibrational Phase Imaging. Physical Review Letters, 2012, 109, 093902.	2.9	17
133	Polarization-resolved four-wave mixing microscopy for structural imaging in thick tissues. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1541.	0.9	17
134	Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids. Journal of Raman Spectroscopy, 2012, 43, 419-424.	1.2	17
135	Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy. Optics Express, 2020, 28, 15062.	1.7	17
136	A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell. Review of Scientific Instruments, 2009, 80, 083702.	0.6	16
137	Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres. Biomedical Optics Express, 2010, 1, 1075.	1.5	16
138	Wide-field vibrational phase imaging in an extremely folded box-CARS geometry. Optics Letters, 2013, 38, 709.	1.7	16
139	Labelâ€free nonâ€linear microscopy to measure myelin outcome in a rodent model of Charcotâ€Marieâ€Tooth diseases. Journal of Biophotonics, 2018, 11, e201800186.	1.1	16
140	High-Sensitivity High-Speed Compressive Spectrometer for Raman Imaging. ACS Photonics, 2019, 6, 1409-1415.	3.2	16
141	Characterization by guided wave of instabilities of optical coatings submitted to high-power flux: thermal and third-order nonlinear properties of dielectric thin films. Applied Optics, 1993, 32, 5628.	2.1	15
142	Field quantization and spontaneous emission in lossless dielectric multilayer structures. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1997, 9, 1017-1040.	1.0	15
143	Focused field symmetries for background-free coherent anti-Stokes Raman spectroscopy. Physical Review A, 2008, 77, .	1.0	15
144	Compressive Raman imaging with spatial frequency modulated illumination. Optics Letters, 2019, 44, 1936.	1.7	15

9

#	Article	IF	CITATIONS
145	Conformational modulation and hydrodynamic radii of <scp>CP</scp> 12 protein and its complexes probed by fluorescence correlation spectroscopy. FEBS Journal, 2014, 281, 3206-3217.	2.2	14
146	Image-based adaptive optics for in vivo imaging in the hippocampus. Scientific Reports, 2017, 7, 42924.	1.6	14
147	Complementary Speckle Patterns: Deterministic Interchange of Intrinsic Vortices and Maxima through Scattering Media. Physical Review Letters, 2017, 118, 043903.	2.9	14
148	Background-suppressed SRS fingerprint imaging with a fully integrated system using a single optical parametric oscillator. Optics Express, 2020, 28, 14490.	1.7	14
149	High-speed chemical imaging of dynamic and histological samples with stimulated Raman micro-spectroscopy. Optics Express, 2020, 28, 15505.	1.7	14
150	Simultaneous stimulated Raman gain and loss detection (SRGAL). Optics Express, 2020, 28, 29619.	1.7	14
151	Two-wave interferences space-time duality: Young slits, Fresnel biprism and Billet bilens. Optics Communications, 2017, 397, 31-38.	1.0	13
152	Miniature 120-beam coherent combiner with 3D-printed optics for multicore fiber-based endoscopy. Optics Letters, 2021, 46, 4968.	1.7	13
153	Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. Optics Letters, 2019, 44, 5153.	1.7	13
154	Spontaneous Emission Control with Planar Dielectric Structures: An Asset for Ultrasensitive Fluorescence Analysis. Single Molecules, 2000, 1, 207-214.	1.6	12
155	Raman depolarization ratio of liquids probed by linear polarization coherent anti‣tokes Raman spectroscopy. Journal of Raman Spectroscopy, 2009, 40, 775-780.	1.2	12
156	Imaging the Gouy phase shift in photonic jets with a wavefront sensor. Optics Letters, 2012, 37, 3531.	1.7	12
157	Experimental observation of temporal dispersion gratings in fiber optics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1511.	0.9	12
158	Arago spot formation in the time domain. Journal of Optics (United Kingdom), 2019, 21, 105504.	1.0	12
159	Shot-noise limited tunable dual-vibrational frequency stimulated Raman scattering microscopy. Biomedical Optics Express, 2021, 12, 7780.	1.5	12
160	Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope. Journal of Visualized Experiments, 2016, , .	0.2	11
161	An adaptive microscope for the imaging of biological surfaces. Light: Science and Applications, 2021, 10, 210.	7.7	11
162	Line-scan compressive Raman imaging with spatiospectral encoding. Optics Letters, 2020, 45, 5567.	1.7	11

#	Article	IF	CITATIONS
163	Influence of the Raman depolarisation ratio on far-field radiation patterns in coherent anti-Stokes Raman scattering (CARS) microscopy. Journal of the European Optical Society-Rapid Publications, 2006, 1, .	0.9	10
164	Nonlinear pulse shaping by coherent addition of multiple redshifted solitons. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1716.	0.9	10
165	Filtering of matter symmetry properties by circularly polarized nonlinear optics. Physical Review A, 2014, 90, .	1.0	10
166	Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing. Lab on A Chip, 2015, 15, 877-881.	3.1	10
167	Coherent anti-Stokes Raman Fourier ptychography. Optics Express, 2019, 27, 23497.	1.7	10
168	Luminescence properties of Pr3+-doped optical microcavities. Journal of Luminescence, 1999, 83-84, 275-282.	1.5	9
169	Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror. Applied Optics, 2006, 45, 4497.	2.1	9
170	Background-free coherent anti-Stokes Raman spectroscopy near transverse interfaces: a vectorial study. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1655.	0.9	9
171	Rapidly tunable and compact coherent Raman scattering light source for molecular spectroscopy. Journal of Raman Spectroscopy, 2014, 45, 515-520.	1.2	9
172	Bending-induced inter-core group delays in multicore fibers. Optics Express, 2017, 25, 31863.	1.7	9
173	Praseodymium-doped planar multidielectric microcavities: induced lifetime changes over the emission spectrum. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 832.	0.9	8
174	Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy. Journal of the European Optical Society-Rapid Publications, 0, 4, .	0.9	8
175	Enhanced fluorescence from metal nanoapertures: physical characterizations and biophotonic applications. Proceedings of SPIE, 2010, , .	0.8	8
176	High-efficiency single molecule fluorescence detection and correlation spectroscopy with dielectric microspheres. , 2010, , .		8
177	Soliton dynamics in photonic-crystal fibers for coherent Raman microspectroscopy and microscopy. Optical Fiber Technology, 2012, 18, 379-387.	1.4	8
178	A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses. Methods, 2018, 140-141, 212-222.	1.9	8
179	Impact of initial pulse shape on the nonlinear spectral compression in optical fibre. Optics and Laser Technology, 2018, 99, 301-309.	2.2	8
180	Dual-focus stimulated Raman scattering microscopy: a concept for multi-focus scaling. Optics Letters, 2018, 43, 4763.	1.7	8

#	Article	IF	CITATIONS
181	Shock wave and plasma dynamics in a surface discharge flash lamp. Applied Physics Letters, 1994, 65, 1626-1628.	1.5	7
182	Optical Properties of Dielectric Microcavities Implanted with Rare Earth Atoms. Materials Science Forum, 1997, 239-241, 717-720.	0.3	7
183	Optimization and characterization of a femtosecond tunable light source based on the soliton self-frequency shift in photonic crystal fiber. Proceedings of SPIE, 2011, , .	0.8	7
184	Polarized multiplex coherent anti-Stokes Raman scattering using a picosecond laser and a fiber supercontinuum. Journal of Biomedical Optics, 2011, 16, 021108.	1.4	7
185	Fast and label-free. Nature Photonics, 2012, 6, 802-803.	15.6	7
186	Phase retrieval in multicore fiber bundles. Optics Letters, 2017, 42, 647.	1.7	7
187	Origin and suppression of parasitic signals in Kagomé lattice hollow core fibers used for SRS microscopy and endoscopy. Optics Letters, 2017, 42, 1824.	1.7	7
188	Single-shot noninterferometric measurement of the phase transmission matrix in multicore fibers. Optics Letters, 2018, 43, 4493.	1.7	7
189	Low frequency coherent Raman spectroscopy. JPhys Photonics, 2021, 3, 042004.	2.2	7
190	New process for manufacturing ceramic microfluidic devices for microreactor and bioanalytical applications. , 2001, , 103-112.		7
191	Label-free highly multimodal nonlinear endoscope. Optics Express, 2022, 30, 25020.	1.7	7
192	Light-induced refractive-index modifications in dielectric thin films: experimental determination of relaxation time and amplitude. Applied Optics, 1996, 35, 5013.	2.1	6
193	Consequences of Ti-, Li-, and Er-ion implantations on the optical properties of single layers of Ta_2O_5. Applied Optics, 1996, 35, 5085.	2.1	6
194	Spontaneous emission in multilayer microcavities: modal theory extended with Fourier-Green analysis for dissipative structures. Journal of Optics, 1998, 7, 549-563.	0.5	6
195	Strong extraction coefficient for sources located inside waveguide grating structures. Journal of Optics, 1999, 1, 507-511.	1.5	6
196	Light emission from sources located within metallodielectric planar microcavities. Applied Optics, 1999, 38, 3602.	2.1	6
197	Light emission from europium chelates located in crossed grating structures. Journal of Optics, 2002, 4, S115-S118.	1.5	6
198	Photonic nanojet focusing for hollow-core photonic crystal fiber probes. Applied Optics, 2012, 51, 8637.	0.9	6

#	Article	IF	CITATIONS
199	Fiber-based ultrashort pulse delivery for nonlinear imaging using high-energy solitons. Journal of Biomedical Optics, 2014, 19, 086021.	1.4	6
200	Mechanical Properties of Optical Dielectric Thin Films Deposited by the Ion Plating Technique. Microscopy Microanalysis Microstructures, 1997, 8, 251-260.	0.4	6
201	Resonant focusing in a planar microcavity. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 2712.	0.9	5
202	Biophotonics applications of nanometric apertures. International Journal of Materials and Product Technology, 2009, 34, 488.	0.1	5
203	Compressive Imaging Through Optical Fiber with Partial Speckle Scanning. SIAM Journal on Imaging Sciences, 2022, 15, 387-423.	1.3	5
204	Effects of F2Color Center Spatial Distribution on the Emission Properties of Optical Microcavities Based on LiF Films. Radiation Effects and Defects in Solids, 2003, 158, 185-190.	0.4	4
205	Vibrational imaging by coherent anti-stokes Raman scattering (CARS) microscopy. , 2004, 5463, 133.		4
206	Design and fabrication of optical microcavities based on F2 colour centres in lithium fluoride films. Optics Communications, 2004, 233, 389-396.	1.0	4
207	Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: Dk-CARS I Axial interfaces. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 2519.	0.8	4
208	Saturated excitation of fluorescence to quantify excitation enhancement in aperture antennas. Optics Express, 2012, 20, 18085.	1.7	4
209	Nonlinear optical susceptibility described with a spherical formalism applied to coherent anti-Stokes Raman scattering. Physical Review A, 2017, 96, .	1.0	4
210	Spectrally narrow features in a supercontinuum generated by shaped pulse trains. Optics Express, 2018, 26, 5694.	1.7	4
211	Roadmap on bio-nano-photonics. Journal of Optics (United Kingdom), 2021, 23, 073001.	1.0	4
212	Modified spontaneous emission in oligo (p-phenylene vinylene) planar microcavities. Optical Materials, 1998, 9, 25-33.	1.7	3
213	Broad band emitting color centers in lithium fluoride films for optical microcavities. Radiation Effects and Defects in Solids, 2001, 156, 151-155.	0.4	3
214	Color center luminescence decay times in optical microcavities based on LiF films. Journal of Luminescence, 2001, 94-95, 811-814.	1.5	3
215	Detection of chemical interfaces in coherent anti-Stokes Raman scattering microscopy: D-CARS II Arbitrary interfaces. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 2531.	0.8	3
216	Transverse chemical interface detection with coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics, 2011, 16, 086006.	1.4	3

#	Article	IF	CITATIONS
217	Quadriwave lateral shearing interferometry as a quantification tool for microscopy. Application to dry mass determination of living cells, temperature mapping, and vibrational phase imaging. Proceedings of SPIE, 2013, , .	0.8	3
218	Linear and Nonlinear Fiber Propagation of Partially Coherent Fields Exhibiting Temporal Correlations. Annalen Der Physik, 2020, 532, 1900597.	0.9	3
219	Detection of imprecise estimations for polarization-resolved second-harmonic generation microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1353.	0.8	3
220	Solid-Core Photonic Bandgap Fiber for the Generation of Tunable High-Energy Solitons. , 2013, , .		3
221	3D nanoparticle superlocalization with a thin diffuser. Optics Letters, 2022, 47, 3079.	1.7	3
222	Mechanical properties of dielectric thin films. , 1997, 3133, 176.		2
223	Engineering of optical active microcavities based on color centers in LiF by ion implantation. Optical Materials, 2006, 28, 1166-1170.	1.7	2
224	Coherent anti-Stokes Raman scattering in a microcavity. Optics Letters, 2009, 34, 1789.	1.7	2
225	Polarized Resolved Single-Molecule Localization-Based Super-Resolution Fluorescence Microscopy Reveals Orientation Order in Bio-Molecular Assemblies. Biophysical Journal, 2014, 106, 203a-204a.	0.2	2
226	Observation of the compatibility of stimulated Raman histology with pathology workflow and genome sequencing. Translational Biophotonics, 2021, 3, e202000020.	1.4	2
227	Fluorescence Correlation Spectroscopy. Methods in Molecular Biology, 2011, 783, 181-195.	0.4	2
228	Background-free Coherent Raman Imaging: The CARS and SRS Contrast Mechanisms. Springer Series in Optical Sciences, 2012, , 347-372.	0.5	2
229	Ultra-miniaturized Endoscopes with Multi-Core Fibers. , 2020, , .		2
230	Spontaneous emission of rare-earth ions confined in planar multilayer dielectric microcavities. , 1997, , .		1
231	Thin-film luminescence under ultraviolet irradiation. Applied Optics, 1999, 38, 5458.	2.1	1
232	<title>Stress in dielectric thin films: evolution with annealing and ion implantation</title> . , 1999, , .		1
233	Planar optical microcavities based on color centers in lithium fluoride. AIP Conference Proceedings, 2004, , .	0.3	1
234	Optical microcavities based on colour centres: new approach to activate resonator. Electronics Letters, 2004, 40, 1294.	0.5	1

#	Article	IF	CITATIONS
235	Axial localization of luminophores by partial coherence interferometry. , 2004, , .		1
236	Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) microscopy. , 2006, 6093, 62.		1
237	Coherent anti-Stokes Raman scattering in a Fabry-Perot cavity: A theoretical study. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1295.	0.9	1
238	Broadband multiplex CARS microspectroscopy in the picosecond regime. , 2010, , .		1
239	Deciphering fluorescence signals by quantifying separately the excitation intensity from the number of emitters. Optics Letters, 2011, 36, 3317.	1.7	1
240	An online load identification algorithm for non-intrusive load monitoring in homes. , 2013, , .		1
241	Coherent Anti-Stokes Raman Fourier Ptychography. , 2019, , .		1
242	3D-coherent anti-Stokes Raman scattering Fourier ptychography tomography (CARS-FPT). Optics Express, 2021, 29, 4230.	1.7	1
243	Laser scanning dark-field coherent anti-Stokes Raman scattering (DF-CARS): a numerical study. Optics Express, 2021, 29, 3985.	1.7	1
244	Optical Thin Films for Spontaneous Emission Control. Springer Series in Optical Sciences, 2003, , 455-478.	0.5	1
245	Propriétés radiatives d'atomes luminescents placés dans une microcavité planaire. Annales De Physique, 1995, 20, 625-626.	0.2	1
246	Planar plasmonic antenna arrays resolve transient nanoscopic heterogeneities in biological membranes. , 2020, , .		1
247	Towards two-photon lensless endoscopes: Inter-core group delay compensation in a multi-core fiber. , 2015, , .		1
248	Dielectric Thin Films for Microcavity Applications. , 1996, , 427-442.		1
249	Tapered Multicore Fiber for Lensless Endoscopes. ACS Photonics, 2022, 9, 2547-2554.	3.2	1
250	Guided-wave characterization techniques for the comparison of properties of different optical coatings. , 1993, , .		0
251	Interpreting anisotropy and disturbances of optical properties of thin films in terms of layer microstructure. , 1994, 2253, 1232.		0
252	Sources within multilayer optics: a single microcavity formula for energy balance. , 1997, , .		0

#	Article	IF	CITATIONS
253	<title>Ion implantation in dielectric thin films for passive and active components</title> . , 1998, 3175, 15.		Ο
254	<title>Spontaneous emission modifications in planar microcavities: application to autofluorescence control for thin films under UV irradiation</title> . , 1999, , .		0
255	Détection et exaltation de la luminescence de molécules biologiques individuelles en solution. European Physical Journal Special Topics, 2002, 12, 299-300.	0.2	Ο
256	Optical microcavities based on F 2 color centers in lithium fluoride films: modification of spontaneous emission. , 2003, 5131, 139.		0
257	Reducing and shaping the fluorescence detection volume for single bio-molecules analysis: the assets of nanophotonic structures. , 2004, , .		0
258	Observation of the interferences between the emitted beams in a 4Pi microscope by partial coherence interferometry. Applied Physics Letters, 2005, 87, 181103.	1.5	0
259	Polarization and phase pulse shaping applied to nonlinear tensorial structure read-out. , 2010, , .		0
260	Publisher's Note: Revisiting the Young's Double Slit Experiment for Background-Free Nonlinear Raman Spectroscopy and Microscopy [Phys. Rev. Lett. 104 , 213905 (2010)]. Physical Review Letters, 2010, 104, .	2.9	0
261	Polarization-resolved coherent anti-Stokes Raman scattering microscopy. , 2010, , .		Ο
262	Probing Orientational Order of MHC Class I Protein and Lipids in Cell Membranes by Fluorescence Polarization-Resolved Microscopy Imaging. Biophysical Journal, 2011, 100, 616a.	0.2	0
263	Directional control of molecular fluorescence with bull's eye apertures. , 2011, , .		Ο
264	Stimulated Raman scattering microscopy by spectral focussing and fiber-generated soliton as Stokes pulse. , 2012, , .		0
265	Surface enhanced biodetection on a CMOS biosensor chip. Proceedings of SPIE, 2012, , .	0.8	0
266	Experimental control over soliton interaction in optical fiber by pre-shaped input field. , 2012, , .		0
267	Plasmonic nanoantennas for enhanced single molecule analysis at micromolar conentrations. , 2013, ,		0
268	Experimental observation of the spectral Gouy phase shift. , 2013, , .		0
269	High symmetry orders probed by polarized Coherent Anti Stokes Raman Scattering and Four Wave Mixing. , 2013, , .		0
270	Towards endoscopes with no distal optics. , 2013, , .		0

#	Article	lF	CITATIONS
271	Label free nonlinear imaging in microscopy and endoscopy. , 2013, , .		Ο
272	Imaging molecular organization of cell membranes and proteins assemblies using polarimetric fluorescence microscopy. , 2013, , .		0
273	Second harmonic generation and two-photon excitation fluorescence from individual nanocrystals of pyrazoline derivatives. , 2013, , .		0
274	Single gold nanoparticles to enhance the detection of single fluorescent molecules at micromolar concentration using fluorescence correlation spectroscopy. Proceedings of SPIE, 2014, , .	0.8	0
275	Imaging calcium carbonate distribution in human sweat pore in vivo using nonlinear microscopy. , 2015, , .		Ο
276	Towards two-photon lensless endoscopes: inter-core group delay compensation in a multi-core fiber. Proceedings of SPIE, 2015, , .	0.8	0
277	Nonlinear endoscopy with Kagom $ ilde{A}$ © lattice hollow-core fibers (Conference Presentation). , 2016, , .		Ο
278	Ultrathin endoscopes: nonlinear lensless imaging at the tip of a multimode fiber (Conference) Tj ETQq0 0 0 rgBT	/Overlock	2 10 Tf 50 462
279	Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line. Optics Letters, 2016, 41, 115.	1.7	0
280	Applications of Nonlinear Optical Fibers and Solitons inÂBiophotonics and Microscopy. , 2017, , 199-223.		0
281	From coherent Raman microscopy to coherent Raman endoscopy. , 2017, , .		0
282	Parasitic signals in hollow-core fibers used for SRS endoscopy. , 2017, , .		0
283	Pump-probe and stimulated Raman scattering imaging by means of an ultra-fast acousto-optics delay line. , 2017, , .		Ο
284	New fiber probes for biosensing and imaging. , 2018, , .		0
285	From Coherent Raman Microscopy to Endoscopy. , 2019, , .		Ο
286	2Photon Flexible Lensless Endoscope. , 2019, , .		0
287	Optical Antenna Based Fluorescence Correlation Spectroscopy of Biomembranes. , 2019, , .		0
288	Optical Microcavities Based on Color Centers in LiF Films: New Solid State Miniaturized Light Sources. , 2003, , 697-703.		0

#	Article	IF	CITATIONS
289	Enhanced Raman Scattering in a 10 Attoliter Nanohole. , 2006, , .		0
290	All-fiber transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses. , 2012, , .		0
291	Génération de rayonnements UV et VUV par décharge de surface. Annales De Physique, 1994, 19, C1-1-C1	80.2	0
292	Single-Shot Polarimetry Imaging of Multicore Fibers. , 2016, , .		0
293	New sensorless wavefront estimation approach for two-photon scanning microscopy. Proceedings of SPIE, 2017, , .	0.8	0
294	Wavefront Sensing with a Thin Diffuser: Application to super-localization. , 2019, , .		0
295	Temporal Arago spot in optical fibers. , 2020, , .		0
296	Temporal Arago spot in nonlinear optical fibers. , 2020, , .		0
297	Nonlinear fiber propagation of partially coherent fields exhibiting temporal correlations. , 2020, , .		0
298	Coherent Raman scattering processes. , 2022, , 3-20.		0
299	Sensitivity and noise in SRS microscopy. , 2022, , 21-40.		Ο