Philippe Collas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4817871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling the 3D Genome Using Hi-C and Nuclear Lamin-Genome Contacts. Methods in Molecular Biology, 2022, 2301, 337-352.	0.9	1
2	Histone H3.3 phosphorylation promotes heterochromatin formation by inhibiting H3K9/K36 histone demethylase. Nucleic Acids Research, 2022, 50, 4500-4514.	14.5	12
3	Local euchromatin enrichment in lamina-associated domains anticipates their repositioning in the adipogenic lineage. Genome Biology, 2022, 23, 91.	8.8	10
4	Biology and Model Predictions of the Dynamics and Heterogeneity of Chromatin-Nuclear Lamina Interactions. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	7
5	Restructuring of Lamina-Associated Domains in Senescence and Cancer. Cells, 2022, 11, 1846.	4.1	12
6	Physical constraints in polymer modeling of chromatin associations with the nuclear periphery at kilobase scale. Nucleus, 2021, 12, 6-20.	2.2	7
7	Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Molecular Reproduction and Development, 2021, 88, 187-200.	2.0	15
8	TAD cliques predict key features of chromatin organization. BMC Genomics, 2021, 22, 499.	2.8	8
9	Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells, 2020, 38, 146-159.	3.2	50
10	Unrestrained ESCRT-III drives micronuclear catastrophe and chromosome fragmentation. Nature Cell Biology, 2020, 22, 856-867.	10.3	75
11	Lamina-associated domains: peripheral matters and internal affairs. Genome Biology, 2020, 21, 85.	8.8	162
12	Lamin A/C deficiency in CD4 ⁺ Tâ€cells enhances regulatory Tâ€cells and prevents inflammatory bowel disease. Journal of Pathology, 2019, 249, 509-522.	4.5	12
13	Finding Friends in the Crowd: Three-Dimensional Cliques of Topological Genomic Domains. Frontiers in Genetics, 2019, 10, 602.	2.3	17
14	Nuclear Lamin B1 Interactions With Chromatin During the Circadian Cycle Are Uncoupled From Periodic Gene Expression. Frontiers in Genetics, 2019, 10, 917.	2.3	21
15	Interplay of lamin A and lamin B LADs on the radial positioning of chromatin. Nucleus, 2019, 10, 7-20.	2.2	34
16	Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation. Nature Genetics, 2019, 51, 835-843.	21.4	114
17	PML modulates H3.3 targeting to telomeric and centromeric repeats in mouse fibroblasts. Biochemical and Biophysical Research Communications, 2019, 511, 882-888.	2.1	5
18	Cohesin facilitates zygotic genome activation in zebrafish. Development (Cambridge), 2018, 145, .	2.5	47

#	Article	IF	CITATIONS
19	Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4737-4742.	7.1	72
20	Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 854-869.	2.4	37
21	The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks. Human Molecular Genetics, 2018, 27, 1447-1459.	2.9	34
22	Computational 3D genome modeling using Chrom3D. Nature Protocols, 2018, 13, 1137-1152.	12.0	47
23	Laminopathy-causing lamin A mutations reconfigure lamina-associated domains and local spatial chromatin conformation. Nucleus, 2018, 9, 216-226.	2.2	51
24	Lamin A, Chromatin and FPLD2: Not Just a Peripheral Ménage-Ã-Trois. Frontiers in Cell and Developmental Biology, 2018, 6, 73.	3.7	3
25	OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Molecular Biology of the Cell, 2018, 29, 1487-1501.	2.1	22
26	Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts. Genome Biology, 2017, 18, 21.	8.8	159
27	Functional Human Beige Adipocytes From Induced Pluripotent Stem Cells. Diabetes, 2017, 66, 1470-1478.	0.6	42
28	H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements. Nucleic Acids Research, 2017, 45, 5691-5706.	14.5	19
29	AKAP95 interacts with nucleoporin TPR in mitosis and is important for the spindle assembly checkpoint. Cell Cycle, 2017, 16, 947-956.	2.6	10
30	PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX. Genome Research, 2017, 27, 913-921.	5.5	52
31	A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic <i>MIR335</i> locus. Journal of Cell Biology, 2017, 216, 2731-2743.	5.2	62
32	Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO Journal, 2017, 36, 2829-2843.	7.8	71
33	TLR9 stimulation of B-cells induces transcription of p53 and prevents spontaneous and irradiation-induced cell death independent of DNA damage responses. Implications for Common variable immunodeficiency. PLoS ONE, 2017, 12, e0185708.	2.5	6
34	STAMP2 is required for human adipose-derived stem cell differentiation and adipocyte-facilitated prostate cancer growth <i>in vivo</i> . Oncotarget, 2017, 8, 91817-91827.	1.8	7
35	Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality. PLoS ONE, 2016, 11, e0146390.	2.5	26
36	Localized Movement and Levels of 53BP1 Protein Are Changed by γâ€irradiation in PML Deficient Cells. Journal of Cellular Biochemistry, 2016, 117, 2583-2596.	2.6	7

#	Article	IF	CITATIONS
37	Compromised Telomeric Heterochromatin Promotes ALTernative Lengthening of Telomeres. Trends in Cancer, 2016, 2, 114-116.	7.4	17
38	Mapping Nuclear Lamin-Genome Interactions by Chromatin Immunoprecipitation of Nuclear Lamins. Methods in Molecular Biology, 2016, 1411, 315-324.	0.9	11
39	H3K27me3 Does Not Orchestrate the Expression of Lineage-Specific Markers in hESC-Derived Hepatocytes InÂVitro. Stem Cell Reports, 2016, 7, 192-206.	4.8	18
40	4D nucleomes in single cells: what can computational modeling reveal about spatial chromatin conformation?. Genome Biology, 2016, 17, 54.	8.8	16
41	Aâ€kinase anchoring protein <scp>AKAP</scp> 95 is a novel regulator of ribosomal <scp>RNA</scp> synthesis. FEBS Journal, 2016, 283, 757-770.	4.7	5
42	CHK1-driven histone H3.3 serine 31 phosphorylation is important for chromatin maintenance and cell survival in human ALT cancer cells. Nucleic Acids Research, 2015, 43, 2603-2614.	14.5	46
43	Manifold Based Optimization for Single-Cell 3D Genome Reconstruction. PLoS Computational Biology, 2015, 11, e1004396.	3.2	34
44	Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget, 2015, 6, 26729-26745.	1.8	61
45	Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Research, 2015, 43, gkv847.	14.5	79
46	Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin. Nucleus, 2015, 6, 30-39.	2.2	71
47	The p.R482W substitution in A-type lamins deregulates SREBP1 activity in Dunnigan-type familial partial lipodystrophy. Human Molecular Genetics, 2015, 24, 2096-2109.	2.9	57
48	Transcription outcome of promoters enriched in histone variant H3.3 defined by positioning of H3.3 and local chromatin marks. Biochemical and Biophysical Research Communications, 2015, 460, 348-353.	2.1	0
49	Epigenetic priming of inflammatory response genes by high glucose in adipose progenitor cells. Biochemical and Biophysical Research Communications, 2015, 467, 979-986.	2.1	23
50	Prepatterning of differentiation-driven nuclear lamin A/C-associated chromatin domains by GlcNAcylated histone H2B. Genome Research, 2015, 25, 1825-1835.	5.5	75
51	Normalization of RNA-Sequencing Data from Samples with Varying mRNA Levels. PLoS ONE, 2014, 9, e89158.	2.5	44
52	A hyper-dynamic nature of bivalent promoter states underlies coordinated developmental gene expression modules. BMC Genomics, 2014, 15, 1186.	2.8	11
53	Enriched domain detector: a program for detection of wide genomic enrichment domains robust against local variations. Nucleic Acids Research, 2014, 42, e92-e92.	14.5	111
54	Browning of White Adipose Cells by Intermediate Metabolites: An Adaptive Mechanism to Alleviate Redox Pressure. Diabetes, 2014, 63, 3253-3265.	0.6	220

#	Article	IF	CITATIONS
55	Deregulation of Fragile X-related protein 1 by the lipodystrophic lamin A p.R482W mutation elicits a myogenic gene expression program in preadipocytes. Human Molecular Genetics, 2014, 23, 1151-1162.	2.9	27
56	Closing the (nuclear) envelope on the genome: How nuclear lamins interact with promoters and modulate gene expression. BioEssays, 2014, 36, 75-83.	2.5	46
57	The PML-associated protein DEK regulates the balance of H3.3 loading on chromatin and is important for telomere integrity. Genome Research, 2014, 24, 1584-1594.	5.5	63
58	The specific alteration of histone methylation profiles by DZNep during early zebrafish development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1307-1315.	1.9	18
59	Lamin A/C-promoter interactions specify chromatin state–dependent transcription outcomes. Genome Research, 2013, 23, 1580-1589.	5.5	157
60	DAXX-dependent supply of soluble (H3.3–H4) dimers to PML bodies pending deposition into chromatin. Genome Research, 2013, 23, 440-451.	5.5	61
61	Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics, 2013, 8, 281-289.	2.7	32
62	Epigenetic Marking of the Zebrafish Developmental Program. Current Topics in Developmental Biology, 2013, 104, 85-112.	2.2	40
63	Epigenetic Regulation of Nestin Expression During Neurogenic Differentiation of Adipose Tissue Stem Cells. Stem Cells and Development, 2013, 22, 1042-1052.	2.1	30
64	Nuclear lamins. Nucleus, 2013, 4, 424-430.	2.2	27
65	Prepatterning of Developmental Gene Expression by Modified Histones before Zygotic Genome Activation. Developmental Cell, 2011, 21, 993-1004.	7.0	188
66	A Chromatin Immunoprecipitation Protocol for Small Cell Numbers. Methods in Molecular Biology, 2011, 791, 179-193.	0.9	9
67	The Current State of Chromatin Immunoprecipitation. Molecular Biotechnology, 2010, 45, 87-100.	2.4	224
68	Promoter DNA Methylation Patterns of Differentiated Cells Are Largely Programmed at the Progenitor Stage. Molecular Biology of the Cell, 2010, 21, 2066-2077.	2.1	72
69	Chromatin Environment of Histone Variant H3.3 Revealed by Quantitative Imaging and Genome-scale Chromatin and DNA Immunoprecipitation. Molecular Biology of the Cell, 2010, 21, 1872-1884.	2.1	42
70	Programming differentiation potential in mesenchymal stem cells. Epigenetics, 2010, 5, 476-482.	2.7	56
71	Chromatin states of core pluripotency-associated genes in pluripotent, multipotent and differentiated cells. Biochemical and Biophysical Research Communications, 2010, 391, 762-767.	2.1	31
72	Promoter-exon relationship of H3 lysine 9, 27, 36 and 79 methylation on pluripotency-associated genes. Biochemical and Biophysical Research Communications, 2010, 401, 611-617.	2.1	25

#	Article	IF	CITATIONS
73	Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos. PLoS ONE, 2010, 5, e9150.	2.5	91
74	μChIP: Chromatin Immunoprecipitation for Small Cell Numbers. Methods in Molecular Biology, 2009, 567, 59-74.	0.9	27
75	Proteomics Analysis of Epithelial Cells Reprogrammed in Cell-free Extract. Molecular and Cellular Proteomics, 2009, 8, 1401-1412.	3.8	7
76	Histone H3 Modifications Associated With Differentiation and Long-Term Culture of Mesenchymal Adipose Stem Cells. Stem Cells and Development, 2009, 18, 725-736.	2.1	91
77	Epigenetic states in stem cells. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 900-905.	2.4	33
78	Fish'n ChIPs: Chromatin Immunoprecipitation in the Zebrafish Embryo. Methods in Molecular Biology, 2009, 567, 75-86.	0.9	61
79	The State-of-the-Art of Chromatin Immunoprecipitation. Methods in Molecular Biology, 2009, 567, 1-25.	0.9	32
80	Fast genomic μChIP-chip from 1,000 cells. Genome Biology, 2009, 10, R13.	9.6	35
81	Epigenetic Basis for Differentiation Plasticity in Stem Cells. , 2009, , 257-268.		1
82	Sensitive on-chip quantitative real-time PCR performed on an adaptable and robust platform. Biomedical Microdevices, 2008, 10, 769-776.	2.8	19
83	A rapid micro chromatin immunoprecipitation assay (ChIP). Nature Protocols, 2008, 3, 1032-1045.	12.0	259
84	Highâ€resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 2008, 12, 553-563.	3.6	148
85	μChIP—a rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Research, 2008, 36, e15.	14.5	78
86	Epigenetic Basis for the Differentiation Potential of Mesenchymal and Embryonic Stem Cells. Transfusion Medicine and Hemotherapy, 2008, 35, 205-215.	1.6	23
87	Persistence of Collagen Type II Synthesis and Secretion in Rapidly Proliferating Human Articular Chondrocytes <i>In Vitro</i> . Tissue Engineering - Part A, 2008, 14, 1999-2007.	3.1	16
88	Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Frontiers in Bioscience - Landmark, 2008, 13, 929.	3.0	91
89	Novel Approaches to Epigenetic Reprogramming of Somatic Cells. Cloning and Stem Cells, 2007, 9, 26-32.	2.6	17
90	Epigenetic Reprogramming of OCT4 and NANOG Regulatory Regions by Embryonal Carcinoma Cell Extract. Molecular Biology of the Cell, 2007, 18, 1543-1553.	2.1	188

#	Article	IF	CITATIONS
91	Q2ChIP, a Quick and Quantitative Chromatin Immunoprecipitation Assay, Unravels Epigenetic Dynamics of Developmentally Regulated Genes in Human Carcinoma Cells. Stem Cells, 2007, 25, 1037-1046.	3.2	137
92	A quick and quantitative chromatin immunoprecipitation assay for small cell samples. Frontiers in Bioscience - Landmark, 2007, 12, 4925.	3.0	44
93	Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biology, 2007, 8, 18.	3.0	99
94	Programming the genome in embryonic and somatic stem cells. Journal of Cellular and Molecular Medicine, 2007, 11, 602-620.	3.6	38
95	CpG Methylation Profiles of Endothelial Cell-Specific Gene Promoter Regions in Adipose Tissue Stem Cells Suggest Limited Differentiation Potential Toward the Endothelial Cell Lineage. Stem Cells, 2007, 25, 852-861.	3.2	60
96	On the way to reprogramming cells to pluripotency using cell-free extracts. Reproductive BioMedicine Online, 2006, 12, 762-770.	2.4	19
97	Epigenetic reprogramming of nuclei using cell extracts. Stem Cell Reviews and Reports, 2006, 2, 309-317.	5.6	37
98	Stable CpG Hypomethylation of Adipogenic Promoters in Freshly Isolated, Cultured, and Differentiated Mesenchymal Stem Cells from Adipose Tissue. Molecular Biology of the Cell, 2006, 17, 3543-3556.	2.1	132
99	Cell Extract-Derived Differentiation of Embryonic Stem Cells. Stem Cells, 2005, 23, 712-718.	3.2	87
100	Isolation and Transcription Profiling of Purified Uncultured Human Stromal Stem Cells: Alteration of Gene Expression after In Vitro Cell Culture. Molecular Biology of the Cell, 2005, 16, 1131-1141.	2.1	317
101	Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression. Experimental Cell Research, 2005, 309, 32-47.	2.6	34
102	Induction of Dedifferentiation, Genomewide Transcriptional Programming, and Epigenetic Reprogramming by Extracts of Carcinoma and Embryonic Stem Cells. Molecular Biology of the Cell, 2005, 16, 5719-5735.	2.1	258
103	Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochemical and Biophysical Research Communications, 2004, 314, 420-427.	2.1	222
104	Signalling to the nucleus via A-kinase anchoring proteins. Symposia of the Society for Experimental Biology, 2004, , 245-63.	0.0	0
105	Teaching cells new tricks. Trends in Biotechnology, 2003, 21, 354-361.	9.3	50
106	Nuclear reprogramming in cell–free extracts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1389-1395.	4.0	34
107	DNA-containing extracellular 50-nm particles in the ileal Peyer's patch of sheep. European Journal of Cell Biology, 2002, 81, 69-76.	3.6	4
108	Reprogramming fibroblasts to express T-cell functions using cell extracts. Nature Biotechnology, 2002, 20, 460-466.	17.5	236

#	Article	IF	CITATIONS
109	Differential regulation of maternal and paternal chromosome condensation in mitotic zygotes. Journal of Cell Science, 2002, 115, 2931-2940.	2.0	31
110	Mistargeting of B-Type Lamins at the End of Mitosis. Journal of Cell Biology, 2001, 153, 621-626.	5.2	91
111	CDK1-mediated phosphorylation of the RIIα regulatory subunit of PKA works as a molecular switch that promotes dissociation of RIIα from centrosomes at mitosis. Journal of Cell Science, 2001, 114, 3243-3254.	2.0	32
112	Regulation of anchoring of the RIIα regulatory subunit of PKA to AKAP95 by threonine phosphorylation of RIIα: implications for chromosome dynamics at mitosis. Journal of Cell Science, 2001, 114, 3255-3264.	2.0	34
113	Identification, cloning and characterization of a novel nuclear protein, HA95, homologous to A-kinase anchoring protein 95*. Biology of the Cell, 2000, 92, 27-37.	2.0	26
114	Gene-Gun-Mediated Transfer of Reporter Genes to Somatic Zebrafish (Danio rerio) Tissues. Marine Biotechnology, 2000, 2, 293-300.	2.4	8
115	Recruitment of Protein Phosphatase 1 to the Nuclear Envelope by a-Kinase Anchoring Protein Akap149 Is a Prerequisite for Nuclear Lamina Assembly. Journal of Cell Biology, 2000, 150, 1251-1262.	5.2	155
116	A Kinase–Anchoring Protein (Akap95) Recruits Human Chromosome-Associated Protein (Hcap-D2/Eg7) for Chromosome Condensation in Mitotic Extract. Journal of Cell Biology, 2000, 149, 531-536.	5.2	71