Benjamin A Soll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4817574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 2009, 459, 657-662.	13.7	963
2	Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Developmental Biology, 1988, 128, 164-177.	0.9	315
3	Cutting Edge: <i>Candida albicans</i> Hyphae Formation Triggers Activation of the Nlrp3 Inflammasome. Journal of Immunology, 2009, 183, 3578-3581.	0.4	265
4	A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia, 1984, 85, 21-30.	1.3	243
5	In <i>Candida albicans</i> , White-Opaque Switchers Are Homozygous for Mating Type. Genetics, 2002, 162, 737-745.	1.2	217
6	TOS9 Regulates White-Opaque Switching in Candida albicans. Eukaryotic Cell, 2006, 5, 1674-1687.	3.4	207
7	Misexpression of the Opaque-Phase-Specific Gene <i>PEP1</i> (<i>SAP1</i>) in the White Phase of <i>Candida albicans</i> Confers Increased Virulence in a Mouse Model of Cutaneous Infection. Infection and Immunity, 1999, 67, 6652-6662.	1.0	202
8	Tyramine and octopamine have opposite effects on the locomotion ofDrosophila larvae. Journal of Neurobiology, 2004, 58, 425-441.	3.7	195
9	N-Acetylglucosamine Induces White to Opaque Switching, a Mating Prerequisite in Candida albicans. PLoS Pathogens, 2010, 6, e1000806.	2.1	180
10	Multilocus Sequence Typing of Candidaglabrata Reveals Geographically EnrichedClades. Journal of Clinical Microbiology, 2003, 41, 5709-5717.	1.8	172
11	Emergence of Fluconazole Resistance in a Candida parapsilosis Strain That Caused Infections in a Neonatal Intensive Care Unit. Journal of Clinical Microbiology, 2005, 43, 2729-2735.	1.8	168
12	Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. Journal of Cell Biology, 2007, 179, 777-791.	2.3	167
13	A role for myosin VII in dynamic cell adhesion. Current Biology, 2001, 11, 318-329.	1.8	161
14	CO2 Regulates White-to-Opaque Switching in Candida albicans. Current Biology, 2009, 19, 330-334.	1.8	160
15	The Ins and Outs of DNA Fingerprinting the Infectious Fungi. Clinical Microbiology Reviews, 2000, 13, 332-370.	5.7	159
16	One-dimensional diffusion of microtubules bound to flagellar dynein. Cell, 1989, 59, 915-925.	13.5	156
17	Opaque cells signal white cells to form biofilms in Candida albicans. EMBO Journal, 2006, 25, 2240-2252.	3.5	155
18	Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology (United Kingdom), 2006, 152, 2287-2299.	0.7	155

#	Article	IF	CITATIONS
19	Slb/Wnt11 controls hypoblast cell migration and morphogenesis at the onset of zebrafish gastrulation. Development (Cambridge), 2003, 130, 5375-5384.	1.2	145
20	Coordination and Modulation of Locomotion Pattern Generators in Drosophila Larvae: Effects of Altered Biogenic Amine Levels by the Tyramine beta Hydroxlyase Mutation. Journal of Neuroscience, 2006, 26, 1486-1498.	1.7	144
21	A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. EMBO Journal, 2002, 21, 4560-4570.	3.5	140
22	Myosin IB null mutants ofDictyostelium exhibit abnormalities in motility. Cytoskeleton, 1991, 20, 301-315.	4.4	136
23	<i>Candida parapsilosis</i> Characterization in an Outbreak Setting. Emerging Infectious Diseases, 2004, 10, 1074-1081.	2.0	135
24	Cell Biology of Mating in Candida albicans. Eukaryotic Cell, 2003, 2, 49-61.	3.4	132
25	Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16053-16058.	3.3	125
26	Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Tropica, 2002, 81, 101-110.	0.9	124
27	Skin Facilitates Candida albicans Mating. Infection and Immunity, 2003, 71, 4970-4976.	1.0	122
28	High-frequency phenotypic switching in Candida albicans. Trends in Genetics, 1993, 9, 61-65.	2.9	119
29	Why does <i>Candida albicans</i> switch?. FEMS Yeast Research, 2009, 9, 973-989.	1.1	118
30	EFG1 Null Mutants of Candida albicansSwitch but Cannot Express the Complete Phenotype of White-Phase Budding Cells. Journal of Bacteriology, 2000, 182, 1580-1591.	1.0	115
31	Clade-Specific Flucytosine Resistance Is Due to a Single Nucleotide Change in the FUR1 Gene of Candida albicans. Antimicrobial Agents and Chemotherapy, 2004, 48, 2223-2227.	1.4	114
32	Variation in adhesion and cell surface hydrophobicity in Candida albicans white and opaque phenotypes. Mycopathologia, 1988, 102, 149-156.	1.3	113
33	The Closely Related Species Candida albicans and Candida dubliniensis Can Mate. Eukaryotic Cell, 2004, 3, 1015-1027.	3.4	112
34	Release of a Potent Polymorphonuclear Leukocyte Chemoattractant Is Regulated by White-Opaque Switching in Candida albicans. Infection and Immunity, 2004, 72, 667-677.	1.0	110
35	Requirement of a Vasodilator-stimulated Phosphoprotein Family Member for Cell Adhesion, the Formation of Filopodia, and Chemotaxis in Dictyostelium. Journal of Biological Chemistry, 2002, 277, 49877-49887.	1.6	105
36	Towards a molecular understanding of human diseases using Dictyostelium discoideum. Trends in Molecular Medicine, 2006, 12, 415-424.	3.5	105

#	Article	IF	CITATIONS
37	α-Pheromone-Induced "Shmooing―and Gene Regulation Require White-Opaque Switching during Candida albicans Mating. Eukaryotic Cell, 2003, 2, 847-855.	3.4	102
38	Commitment to germ tube or bud formation during release from stationary phase in Candida albicans. Experimental Cell Research, 1979, 120, 167-179.	1.2	101
39	Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology (United Kingdom), 2005, 151, 673-681.	0.7	99
40	A computer-assisted system for reconstructing and interpreting the dynamic three-dimensional relationships of the outer surface, nucleus and pseudopods of crawling cells. Cytoskeleton, 1998, 41, 225-246.	4.4	97
41	The two-component hybrid kinase regulator CaNIKl of Candida albicans. Microbiology (United) Tj ETQq1 1 0.7843	814.rgBT /	Oyerlock 10
42	The regulation of cellular differentiation in the dimorphic yeastCandida albicans. BioEssays, 1986, 5, 5-11.	1.2	92
43	Heterozygosity of genes on the sex chromosome regulatesCandida albicansvirulence. Molecular Microbiology, 2007, 64, 1587-1604.	1.2	91
44	Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle ofDictyostelium. Cytoskeleton, 1994, 27, 1-12.	4.4	88
45	Ca3 Fingerprinting of Candida albicans Isolates from Human Immunodeficiency Virus-Positive and Healthy Individuals Reveals a New Clade in South Africa. Journal of Clinical Microbiology, 2002, 40, 826-836.	1.8	85
46	Tec1 Mediates the Pheromone Response of the White Phenotype of Candida albicans: Insights into the Evolution of New Signal Transduction Pathways. PLoS Biology, 2010, 8, e1000363.	2.6	85
47	Ca3 Fingerprinting of Candida albicans Bloodstream Isolates from the United States, Canada, South America, and Europe Reveals a European Clade. Journal of Clinical Microbiology, 2002, 40, 2729-2740.	1.8	84
48	Elevated Phenotypic Switching and Drug Resistance of <i>Candida albicans</i> from Human Immunodeficiency Virus-Positive Individuals prior to First Thrush Episode. Journal of Clinical Microbiology, 2000, 38, 3595-3607.	1.8	81
49	Mitotic recombination in Candida albicans: Recessive lethal alleles linked to a gene required for methionine biosynthesis. Molecular Genetics and Genomics, 1982, 187, 477-485.	2.4	80
50	Phenotypic Switching in Candida glabrata Involves Phase-Specific Regulation of the Metallothionein Gene MT-II and the Newly Discovered Hemolysin Gene HLP. Infection and Immunity, 2000, 68, 884-895.	1.0	80
51	Phenotypic switching and filamentation in Candida glabrata. Microbiology (United Kingdom), 2002, 148, 2661-2674.	0.7	80
52	Frequency and orientation of pseudopod formation ofDictyostelium discoideum amebae chemotaxing in a spatial gradient: Further evidence for a temporal mechanism. Cytoskeleton, 1987, 8, 18-26.	4.4	79
53	?Dynamic morphology system?: A method for quantitating changes in shape, pseudopod formation, and motion in normal and mutant amoebae ofDictyostelium discoideum. Journal of Cellular Biochemistry, 1988, 37, 177-192.	1.2	79
54	Morphometric Description of the Wandering Behavior in <i>Drosophila</i> Larvae: Aberrant Locomotion in Na ⁺ and K ⁺ Channel Mutants Revealed by Computer-Assisted Motion Analysis. Journal of Neurogenetics, 1997, 11, 231-254.	0.6	77

#	Article	IF	CITATIONS
55	Identification of Four Distinct Genotypes of Candida dubliniensis and Detection of Microevolution In Vitro and In Vivo. Journal of Clinical Microbiology, 2002, 40, 556-574.	1.8	77
56	Phosphorylation of theDictyostelium myosin II heavy chain is necessary for maintaining cellular polarity and suppressing turning during chemotaxis. , 1998, 39, 31-51.		76
57	Phenotypic Switching and Mating Type Switching of Candida glabrata at Sites ofColonization. Infection and Immunity, 2003, 71, 7109-7118.	1.0	76
58	Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies inCandida albicans. BioEssays, 2004, 26, 10-20.	1.2	76
59	Chromosome Loss Followed by Duplication Is the Major Mechanism of Spontaneous Mating-Type Locus Homozygosis in Candida albicans. Genetics, 2005, 169, 1311-1327.	1.2	76
60	Asynchronous Cell Cycle and Asymmetric Vacuolar Inheritance in True Hyphae of Candida albicans. Eukaryotic Cell, 2003, 2, 398-410.	3.4	75
61	Development and Characterization of Complex DNA Fingerprinting Probes for the Infectious Yeast Candida dubliniensis. Journal of Clinical Microbiology, 1999, 37, 1035-1044.	1.8	75
62	Candida albicansclades. FEMS Immunology and Medical Microbiology, 2003, 39, 1-7.	2.7	74
63	Alternative Mating Type Configurations (a/α versus a/a or α/α) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biology, 2011, 9, e1001117.	2.6	73
64	Behavior ofDictyostelium amoebae is regulated primarily by the temporal dynamic of the natural cAMP wave. Cytoskeleton, 1992, 23, 145-156.	4.4	72
65	ADictyostelium myosin I plays a crucial role in regulating the frequency of pseudopods formed on the substratum. , 1996, 33, 64-79.		72
66	Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology (United Kingdom), 2003, 149, 2947-2960.	0.7	72
67	Cloning and Characterization of a Complex DNA Fingerprinting Probe for Candida parapsilosis. Journal of Clinical Microbiology, 2001, 39, 658-669.	1.8	70
68	Flucytosine Resistance Is Restricted to a Single Genetic Clade of Candida albicans. Antimicrobial Agents and Chemotherapy, 2004, 48, 262-266.	1.4	70
69	PTEN plays a role in the suppression of lateral pseudopod formation during Dictyostelium motility and chemotaxis. Journal of Cell Science, 2007, 120, 2517-2531.	1.2	70
70	Evidence for recombination in Candida glabrata. Fungal Genetics and Biology, 2005, 42, 233-243.	0.9	68
71	Target specificity of the <i>Candida albicans</i> Efg1 regulator. Molecular Microbiology, 2011, 82, 602-618.	1.2	68
72	Chemoresponsiveness to cAMP and Folic Acid during Growth, Development, and Dedifferentiation in Dictyostelium discoideum. Differentiation, 1981, 18, 151-160.	1.0	67

#	Article	IF	CITATIONS
73	The developmental regulation of single-cell motility in Dictyostelium discoideum. Developmental Biology, 1986, 113, 218-227.	0.9	67
74	The Internal Phosphodiesterase RegA Is Essential for the Suppression of Lateral Pseudopods during <i>Dictyostelium</i> Chemotaxis. Molecular Biology of the Cell, 2000, 11, 2803-2820.	0.9	65
75	RasCEF-containing proteins GbpC and GbpD have differential effects on cell polarity and chemotaxis in Dictyostelium. Journal of Cell Science, 2005, 118, 1899-1910.	1.2	65
76	The role of phenotypic switching in the basic biology and pathogenesis of <i>Candida albicans</i> . Journal of Oral Microbiology, 2014, 6, 22993.	1.2	65
77	Three Mating Type-Like Loci in Candida glabrata. Eukaryotic Cell, 2003, 2, 328-340.	3.4	64
78	Relationship between Switching and Mating in Candida albicans. Eukaryotic Cell, 2003, 2, 390-397.	3.4	63
79	The chemotaxis defect of Shwachman-Diamond Syndrome leukocytes. Cytoskeleton, 2004, 57, 158-174.	4.4	63
80	Plasticity of Candida albicans Biofilms. Microbiology and Molecular Biology Reviews, 2016, 80, 565-595.	2.9	63
81	?DMS,? a computer-assisted system for quantitating motility, the dynamics of cytoplasmic flow, and pseudopod formation: Its application toDictyostelium chemotaxis. Cytoskeleton, 1988, 10, 91-106.	4.4	61
82	Amebae ofDictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: Evidence for a temporal mechanism in ameboid chemotaxis. Cytoskeleton, 1987, 8, 7-17.	4.4	60
83	Unique Aspects of Gene Expression during Candida albicans Mating and Possible G 1 Dependency. Eukaryotic Cell, 2005, 4, 1175-1190.	3.4	60
84	The Same Receptor, G Protein, and Mitogen-activated Protein Kinase Pathway Activate Different Downstream Regulators in the Alternative White and Opaque Pheromone Responses of <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 957-970.	0.9	60
85	Genes Selectively Up-Regulated by Pheromone in White Cells Are Involved in Biofilm Formation in Candida albicans. PLoS Pathogens, 2009, 5, e1000601.	2.1	59
86	Mating is rare within as well as between clades of the human pathogen Candida albicans. Fungal Genetics and Biology, 2008, 45, 221-231.	0.9	58
87	Three-dimensional motility cycle in leukocytes. Cytoskeleton, 1992, 22, 211-223.	4.4	57
88	<i>Candida albicans</i> Endocarditis Associated with a Contaminated Aortic Valve Allograft: Implications for Regulation of Allograft Processing. Clinical Infectious Diseases, 1998, 27, 688-691.	2.9	55
89	3D-DIASemb: A Computer-Assisted System for Reconstructing and Motion Analyzing in 4D Every Cell and Nucleus in a Developing Embryo. Developmental Biology, 2002, 245, 329-347.	0.9	55
90	Increased Virulence and Competitive Advantage of a/α Over a/a or α/α Offspring Conserves the Mating System of Candida albicans. Genetics, 2005, 169, 1883-1890.	1.2	55

#	Article	IF	CITATIONS
91	Morphogenesis in the slime mold Dictyostelium discoideum. Developmental Biology, 1975, 47, 292-302.	0.9	54
92	The regulation of nuclear migration and division during pseudo-mycelium outgrowth in the dimorphic yeast Candida albicans. Experimental Cell Research, 1978, 116, 207-215.	1.2	54
93	Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium. Journal of Cell Science, 2005, 118, 2225-2237.	1.2	53
94	Microevolutionary changes in Candida albicans identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive sequence RPS at specific genomic sites. Microbiology (United Kingdom), 1999, 145, 2635-2646.	0.7	52
95	Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells. Computerized Medical Imaging and Graphics, 1999, 23, 3-14.	3.5	51
96	The Shwachman-Bodian-Diamond syndrome gene encodes an RNA-binding protein that localizes to the pseudopod of Dictyostelium amoebae during chemotaxis. Journal of Cell Science, 2006, 119, 370-379.	1.2	51
97	The temporal regulation of protein synthesis during synchronous bud or mycelium formation in the dimorphic yeast Candida albicans. Developmental Biology, 1982, 89, 211-224.	0.9	50
98	A contextual framework for characterizing motility and chemotaxis mutants in Dictyostelium discoideum. Journal of Muscle Research and Cell Motility, 2002, 23, 659-672.	0.9	50
99	Shared, unique and redundant functions of three members of the class I myosins (MyoA, MyoB and) Tj ETQq1 .	1 0.784314 1.2	rgရွာ/Overloc
100	Identification of Genes Upregulated by the Transcription Factor Bcr1 That Are Involved in Impermeability, Impenetrability, and Drug Resistance of Candida albicans a/ α Biofilms. Eukaryotic Cell, 2013, 12, 875-888.	3.4	49
101	Caldesmon mutant defective in Ca2+-calmodulin binding interferes with assembly of stress fibers and affects cell morphology, growth and motility. Journal of Cell Science, 2004, 117, 3593-3604.	1.2	48
102	Interferon regulatory factor 6 regulates keratinocyte migration. Journal of Cell Science, 2014, 127, 2840-8.	1.2	48
103	Molecular Phylogenetic Analysis of a Geographically and Temporally Matched Set of <i>Candida albicans</i> Isolates from Humans and Nonmigratory Wildlife in Central Illinois. Eukaryotic Cell, 2008, 7, 1475-1486.	3.4	47
104	ClC-3 and IClswell are Required for Normal Neutrophil Chemotaxis and Shape Change. Journal of Biological Chemistry, 2008, 283, 34315-34326.	1.6	47
105	Epidemiology of Candida Infections in Aids. , 1990, , 67-74.		47
106	High-frequency switching in Candida albicans and its relations to vaginal candidiasis. American Journal of Obstetrics and Gynecology, 1988, 158, 997-1001.	0.7	46
107	Threeâ€dimensional reconstruction and motion analysis of living, crawling cells. Scanning, 2000, 22, 249-257.	0.7	46
108	Roles of TUP1 in Switching, Phase Maintenance, and Phase-Specific Gene Expression in Candida albicans. Eukaryotic Cell, 2002, 1, 353-365.	3.4	45

#	Article	IF	CITATIONS
109	Impact of Environmental Conditions on the Form and Function of Candida albicans Biofilms. Eukaryotic Cell, 2013, 12, 1389-1402.	3.4	45
110	Sexual Reproduction of Human Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019281-a019281.	2.9	45
111	Segregation of 5-Fluorocytosine-Resistant Variants by <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 1981, 19, 1078-1081.	1.4	44
112	Tortoise, a Novel Mitochondrial Protein, Is Required for Directional Responses of Dictyostelium in Chemotactic Gradients. Journal of Cell Biology, 2001, 152, 621-632.	2.3	44
113	Constitutively Active Protein Kinase A Disrupts Motility and Chemotaxis in Dictyostelium discoideum. Eukaryotic Cell, 2003, 2, 62-75.	3.4	44
114	Temporal and spatial differences in septation during synchronous mycelium and bud formation by Candida albicans. Experimental Mycology, 1979, 3, 298-309.	1.8	43
115	Human polymorphonuclear leukocytes respond to waves of chemoattractant, likeDictyostelium. Cytoskeleton, 2003, 56, 27-44.	4.4	43
116	The Adhesin Hwp1 and the First Daughter Cell Localize to the a/a Portion of the Conjugation Bridge duringCandida albicansMating. Molecular Biology of the Cell, 2003, 14, 4920-4930.	0.9	43
117	Confocal Microscopy of Living Cells. , 2006, , 381-403.		43
118	Discoidin proteins of Dictyostelium are necessary for normal cytoskeletal organization and cellular morphology during aggregation. Differentiation, 1992, 51, 149-161.	1.0	42
119	Changes in the motility, morphology, and F-actin architecture of human dendritic cells in an in vitro model of dendritic cell development. Cytoskeleton, 2000, 46, 200-221.	4.4	42
120	Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genetics and Biology, 2007, 44, 1298-1309.	0.9	42
121	The dependency of nuclear division on volume in the dimorphic yeast Candida albicans. Experimental Cell Research, 1981, 133, 55-62.	1.2	40
122	RasC Plays a Role in Transduction of Temporal Gradient Information in the Cyclic-AMP Wave of Dictyostelium discoideum. Eukaryotic Cell, 2004, 3, 646-662.	3.4	40
123	The regulation of nuclear migration and division during synchronous bud formation in released stationary phase cultures of the yeast Candida albicans. Experimental Cell Research, 1980, 127, 103-113.	1.2	39
124	The programs of protein synthesis accompanying the establishment of alternative phenotypes in Candida albicans. Mycopathologia, 1985, 91, 3-15.	1.3	39
125	Chapter 22 Methods for Manipulating and Investigating Developmental Timing in Dictyostelium discoideum. Methods in Cell Biology, 1987, 28, 413-431.	0.5	39
126	Morphometric Description of the Wandering Behavior in Drosophila Larvae: A Phenotypic Analysis of K + Channel Mutants. Journal of Neurogenetics, 2002, 16, 45-63.	0.6	39

#	Article	IF	CITATIONS
127	The frequency of integrative transformation at phase-specific genes of Candida albicans correlates with their transcriptional state. Molecular Genetics and Genomics, 1995, 246, 342-352.	2.4	38
128	Overexpression of microfilament-stabilizing human caldesmon fragment, CaD39, affects cell attachment, spreading, and cytokinesis. , 1996, 34, 215-229.		37
129	A <i>Candida albicans</i> â€specific region of the αâ€pheromone receptor plays a selective role in the white cell pheromone response. Molecular Microbiology, 2009, 71, 925-947.	1.2	37
130	Fig1 Facilitates Calcium Influx and Localizes to Membranes Destined To Undergo Fusion during Mating in Candida albicans. Eukaryotic Cell, 2011, 10, 435-444.	3.4	37
131	Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity duringDictyosteliumchemotaxis. Journal of Cell Science, 2002, 115, 1733-1747.	1.2	37
132	A characterization of the erasure phenomenon in Dictyostelium. Developmental Biology, 1977, 60, 83-92.	0.9	36
133	Drug Resistance Is Not Directly Affected by Mating Type Locus Zygosity in Candida albicans. Antimicrobial Agents and Chemotherapy, 2003, 47, 1207-1212.	1.4	36
134	Candida albicans Forms a Specialized "Sexual―as Well as "Pathogenic―Biofilm. Eukaryotic Cell, 2013, 12, 1120-1131.	3.4	36
135	"Erasure―inDictyostelium: A dedifferentiation involving the programmed loss of chemotactic functions. Developmental Biology, 1979, 73, 290-303.	0.9	34
136	Intracellular Role of Adenylyl Cyclase in Regulation of Lateral Pseudopod Formation during Dictyostelium Chemotaxis. Eukaryotic Cell, 2005, 4, 775-786.	3.4	34
137	Racial Distribution of Candida dubliniensis Colonization among South Africans. Journal of Clinical Microbiology, 2003, 41, 1838-1842.	1.8	32
138	Candida Biofilms: Is Adhesion Sexy?. Current Biology, 2008, 18, R717-R720.	1.8	32
139	The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in <i>Dictyostelium discoideum</i> . Cytoskeleton, 2009, 66, 567-587.	4.4	31
140	Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis. Journal of Cell Science, 2002, 115, 1733-47.	1.2	30
141	Clade-related amphotericin B resistance among South African Candida albicans isolates. Diagnostic Microbiology and Infectious Disease, 2005, 53, 29-31.	0.8	29
142	Candida albicans White-Opaque Switching Influences Virulence but Not Mating during Oropharyngeal Candidiasis. Infection and Immunity, 2018, 86, .	1.0	29
143	A MADS Box Protein Consensus Binding Site Is Necessary and Sufficient for Activation of the Opaque-Phase-Specific Gene OP4 of Candida albicans. Journal of Bacteriology, 1998, 180, 6607-6616.	1.0	29
144	The regulation of EFG1 in white-opaque switching in Candida albicans involves overlapping promoters. Molecular Microbiology, 2003, 48, 523-536.	1.2	28

#	Article	IF	CITATIONS
145	Dark brown is the more virulent of the switch phenotypes of Candida glabrata. Microbiology (United) Tj ETQq1	1 0.784314 0.7	1 rgBT /Over
146	The role of myosin heavy chain phosphorylation in Dictyostelium motility, chemotaxis and F-actin localization. Journal of Cell Science, 2004, 117, 4819-4835.	1.2	27
147	Phenotypic Switching in Candida glabrata Accompanied by Changes in Expression of Genes with Deduced Functions in Copper Detoxification and Stress. Eukaryotic Cell, 2005, 4, 1434-1445.	3.4	27
148	Nonsex Genes in the Mating Type Locus of Candida albicans Play Roles in a/α Biofilm Formation, Including Impermeability and Fluconazole Resistance. PLoS Pathogens, 2012, 8, e1002476.	2.1	27
149	Reciprocal signaling and direct physical interactions between fibroblasts and breast cancer cells in a 3D environment. PLoS ONE, 2019, 14, e0218854.	1.1	27
150	Ca2+ chemotaxis in <i>Dictyostelium discoideum</i> . Journal of Cell Science, 2010, 123, 3756-3767.	1.2	25
151	Cyclic AMP inhibits dedifferentiation in the cellular slime mold Dictyostelium discoideum. Developmental Biology, 1981, 84, 313-321.	0.9	24
152	Computer-Assisted Systems for the Analysis of Amoeboid Cell Motility. , 2001, 161, 045-058.		24
153	How a Cell Crawls and the Role of Cortical Myosin II. Eukaryotic Cell, 2009, 8, 1381-1396.	3.4	24
154	Utilization of the Mating Scaffold Protein in the Evolution of a New Signal Transduction Pathway for Biofilm Development. MBio, 2011, 2, e00237-10.	1.8	24
155	Regulation of protein synthesis during the preaggregative period of Dictyostelium discoideum development: Involvement of close cell associations and cAMP. Developmental Biology, 1985, 110, 171-191.	0.9	23
156	Microevolutionary changes and chromosomal translocations are more frequent at RPS loci in Candida dubliniensis than in Candida albicans. Infection, Genetics and Evolution, 2002, 2, 19-37.	1.0	23
157	Computer-Assisted Reconstruction and Motion Analysis of the Three-Dimensional Cell. Scientific World Journal, The, 2003, 3, 827-841.	0.8	23
158	The White Cell Response to Pheromone Is a General Characteristic of Candida albicans Strains. Eukaryotic Cell, 2009, 8, 251-256.	3.4	23
159	Gene regulation during dedifferentiation in Dictyostelium discoideum. Developmental Biology, 1987, 120, 561-576.	0.9	22
160	Pseudopodium dynamics and rapid cell movement inDictyostelium Ras pathway mutants. Cytoskeleton, 2002, 53, 150-162.	4.4	22
161	Self-Induction of a / a or α/α Biofilms in Candida albicans Is a Pheromone-Based Paracrine System Requiring Switching. Eukaryotic Cell, 2011, 10, 753-760.	3.4	22
162	Forced expression of a dominant-negative chimeric tropomyosin causes abnormal motile behavior during cell division. Cytoskeleton, 2000, 45, 121-132.	4.4	21

#	Article	IF	CITATIONS
163	Sphingosine-1-phosphate plays a role in the suppression of lateral pseudopod formation duringDictyostelium discoideum cell migration and chemotaxis. Cytoskeleton, 2004, 59, 227-241.	4.4	20
164	Application of 2D and 3D DIAS to Motion Analysis of Live Cells in Transmission and Confocal Microscopy Imaging. , 2006, 346, 261-280.		20
165	Generating a Battery of Monoclonal Antibodies Against Native Green Fluorescent Protein for Immunostaining, FACS, IP, and ChIP Using a Unique Adjuvant. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2014, 33, 80-88.	0.8	20
166	Loss and resynthesis of a developmentally regulated membrane protein (gp80) during dedifferentiation and redifferentiation in Dictyostelium. Developmental Biology, 1983, 98, 502-509.	0.9	19
167	A characterization of the preaggregative period of Dictyostelium discoideum. Developmental Biology, 1985, 110, 157-170.	0.9	19
168	An unconventional myosin required for cell polarization and chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6918-6923.	3.3	18
169	The IplA Ca++ Channel Of <i>Dictyostelium discoideum</i> Is Necessary For Ca++, But Not cAMP Chemotaxis, And Plays A Fundamental Role In Natural Aggregation. Journal of Cell Science, 2012, 125, 1770-83.	1.2	18
170	Melanoma cells undergo aggressive coalescence in a 3D Matrigel model that is repressed by anti-CD44. PLoS ONE, 2017, 12, e0173400.	1.1	18
171	An analysis of developmental timing in Dictyostelium discoideum. Developmental Biology, 1983, 95, 92-107.	0.9	17
172	Characterization of a timing mutant of Dictyostelium discoideum which exhibits "high frequency switching― Developmental Biology, 1987, 120, 25-37.	0.9	17
173	Adaptation in the motility response to camp indictyostelium discoideum. Cytoskeleton, 1988, 9, 9-16.	4.4	17
174	Behavioral studies into the mechanism of eukaryotic chemotaxis. Journal of Chemical Ecology, 1990, 16, 133-150.	0.9	17
175	Developmental and molecular biology of switching in Candida albicans. Oral Surgery, Oral Medicine, and Oral Pathology, 1994, 78, 194-201.	0.6	17
176	Role of Tec1 in the Development, Architecture, and Integrity of Sexual Biofilms of Candida albicans. Eukaryotic Cell, 2015, 14, 228-240.	3.4	17
177	A new method for examining the complexity and relationships of "timers―in developing systems. Developmental Biology, 1983, 95, 73-91.	0.9	16
178	The regulation of†early' enzymes during the development and dedifferentiation of Dictyostelium discoideum. Differentiation, 1985, 30, 1-6.	1.0	16
179	The Role of T Cell Motility and Cytoskeletal Reorganization in HIV-Induced Syncytium Formation. AIDS Research and Human Retroviruses, 1994, 10, 325-327.	0.5	16
180	Inascaris sperm pseudopods, msp fibers move proximally at a constant rate regardless of the forward rate of cellular translocation. Cytoskeleton, 1995, 31, 241-253.	4.4	16

#	Article	IF	CITATIONS
181	Evolution of a new signal transduction pathway in Candida albicans. Trends in Microbiology, 2011, 19, 8-13.	3.5	16
182	The evolution of alternative biofilms in an opportunistic fungal pathogen: An explanation for how new signal transduction pathways may evolve. Infection, Genetics and Evolution, 2014, 22, 235-243.	1.0	16
183	A comparison of high frequency switching in the yeastCandida albicans and the slime moldDictyostelium discoideum. Genesis, 1988, 9, 615-628.	3.1	14
184	HIV-Induced Syncytia in Peripheral Blood Cell Cultures Crawl by Extending Giant Pseudopods. Cellular Immunology, 1995, 166, 261-274.	1.4	14
185	A novel repeat sequence (CKRS-1) containing a tandemly repeated sub-element (kre) accounts for differences between Candida krusei strains fingerprinted with the probe CkF1,2. Current Genetics, 1997, 31, 255-263.	0.8	14
186	Differentiation and dedifferentiation can function simultaneously and independently in the same cells in Dictyostelium discoideum. Developmental Biology, 1982, 91, 183-190.	0.9	13
187	Invasion by WC5 rat cerebellar cells is independent of RSV-induced changes in growth and adhesion. International Journal of Cancer, 1991, 49, 239-245.	2.3	13
188	Quantitative analysis ofCaenorhabditis elegans sperm motility and how it is affected by mutantsspe11 andunc54. , 1997, 37, 98-110.		13
189	The invasive and destructive behavior of HIV-induced T cell syncytia on collagen and endothelium. Journal of Leukocyte Biology, 1998, 63, 233-244.	1.5	13
190	A dedifferentiation-defective mutant of Dictyostelium that retains the capacity to aggregate in the absence of chemotaxis. Genesis, 1983, 4, 167-184.	3.1	12
191	Invasion of rous sarcoma virus-transformed retinal cells: Role of cell motility. International Journal of Cancer, 1991, 47, 560-568.	2.3	12
192	Partial nucleotide sequence of a single ribosomal RNA coding region and secondary structure of the large subunit 25 s rRNA of Candida albicans. Current Genetics, 1994, 26, 321-328.	0.8	12
193	Huntingtin regulates Ca2+ chemotaxis and K+-facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H+ exchanger Nhe1, in a model developmental system: Insights into its possible role in Huntington×3s disease. Developmental Biology, 2014, 394, 24-38.	0.9	12
194	<i>EFG1</i> Mutations, Phenotypic Switching, and Colonization by Clinical a/α Strains of Candida albicans. MSphere, 2020, 5, .	1.3	12
195	A Computer-Assisted 3D Model for Analyzing the Aggregation of Tumorigenic Cells Reveals Specialized Behaviors and Unique Cell Types that Facilitate Aggregate Coalescence. PLoS ONE, 2015, 10, e0118628.	1.1	12
196	Candida Albicans. , 2003, , 165-201.		11
197	Sex: Deviant Mating in Yeast. Current Biology, 2009, 19, R509-R511.	1.8	11
198	Nhe1 Is Essential for Potassium but Not Calcium Facilitation of Cell Motility and the Monovalent Cation Requirement for Chemotactic Orientation in Dictyostelium discoideum. Eukaryotic Cell, 2011, 10, 320-331.	3.4	11

#	Article	IF	CITATIONS
199	Overexpressing <i>TPTE2</i> (<i>TPIP</i>), a homolog of the human tumor suppressor gene <i>PTEN</i> , rescues the abnormal phenotype of the <i>PTENâ^'/â^</i> mutant. Oncotarget, 2018, 9, 21100-21121.	0.8	11
200	The constancy of RNA-polymerase activities during a transcriptionally dependent cell differentiation in Naegleria. Developmental Biology, 1974, 36, 236-244.	0.9	10
201	A Mutation That Depresses cGMP Phosphodiesterase Activity in Dictyostelium Affects Cell Motility through an Altered Chemotactic Signal. Developmental Biology, 1995, 169, 109-122.	0.9	10
202	The "Finger,―a Unique Multicellular Morphology of Candida albicans Induced by CO ₂ and Dependent upon the Ras1-Cyclic AMP Pathway. Eukaryotic Cell, 2012, 11, 1257-1267.	3.4	10
203	2D and 3D Quantitative Analysis of Cell Motility and Cytoskeletal Dynamics. Methods in Molecular Biology, 2009, 586, 315-335.	0.4	10
204	Light Microscopy to Image and Quantify Cell Movement. Methods in Molecular Biology, 2009, 571, 455-471.	0.4	9
205	Comparison of Switching and Biofilm Formation between <i>MTL</i> -Homozygous Strains of Candida albicans and Candida dubliniensis. Eukaryotic Cell, 2015, 14, 1186-1202.	3.4	9
206	4D Tumorigenesis Model for Quantitating Coalescence, Directed Cell Motility and Chemotaxis, Identifying Unique Cell Behaviors, and Testing Anticancer Drugs. Methods in Molecular Biology, 2016, 1407, 229-250.	0.4	9
207	Roles of the Transcription Factors Sfl2 and Efg1 in White-Opaque Switching in a/α Strains of Candida albicans. MSphere, 2019, 4, .	1.3	9
208	Mediated coalescence: a possible mechanism for tumor cellular heterogeneity. American Journal of Cancer Research, 2015, 5, 3485-504.	1.4	9
209	Phagocytosis of Individual CD4 ⁺ T Cells by HIV-Induced T Cell Syncytia. AIDS Research and Human Retroviruses, 1995, 11, 433-442.	0.5	8
210	Reporters for the analysis of gene regulation in fungi pathogenic to man. Current Opinion in Microbiology, 1998, 1, 400-405.	2.3	8
211	Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	8
212	A low-molecular-weight factor which stimulates loss of EDTA-resistant cell cohesion in Dictyostelium. Differentiation, 1984, 27, 168-174.	1.0	7
213	Gene regulation in the white–opaque transition of <i>Candida albicans</i> . Canadian Journal of Botany, 1995, 73, 1049-1057.	1.2	7
214	Integrin α-3 ß-1's central role in breast cancer, melanoma and glioblastoma cell aggregation revealed by antibodies with blocking activity. MAbs, 2019, 11, 691-708.	2.6	7
215	Dictyostelium erasure mutant HI4 abnormally retains development-specific mRNAs during dedifferentiation. Developmental Biology, 1989, 136, 363-371.	0.9	6
216	Developmental mechanisms regulating the rapid decrease in a cohesion glycoprotein mRNA in Dictyostelium function primarily at the level of mRNA degradation. Developmental Biology, 1990, 141, 262-269.	0.9	6

#	Article	IF	CITATIONS
217	Myosin heavy chain kinases play essential roles in Ca2+, but not cAMP, chemotaxis and the natural aggregation of Dictyostelium discoideum. Journal of Cell Science, 2012, 125, 4934-44.	1.2	6
218	Generation and Validation of Monoclonal Antibodies Against the Maltose Binding Protein. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 104-108.	0.8	6
219	Molecular biology of Candida pathogenesis. , 1992, 1, 131-172.		6
220	Quantitative Motion Analysis in Two and Three Dimensions. Methods in Molecular Biology, 2016, 1365, 265-292.	0.4	5
221	Candida albicans Double Mutants Lacking both EFG1 and WOR1 Can Still Switch to Opaque. MSphere, 2020, 5, .	1.3	5
222	PTEN Redundancy: Overexpressing lpten, a Homolog of Dictyostelium discoideum ptenA, the Ortholog of Human PTEN, Rescues All Behavioral Defects of the Mutant ptenAâ ^{~2} . PLoS ONE, 2014, 9, e108495.	1.1	5
223	3D and 4D for the Quantitative Analysis of Cancer Behavior and Screening for Anticancer Drugs. Methods in Molecular Biology, 2022, 2364, 299-318.	0.4	4
224	Computer-Assisted Systems for Dynamic 3D Reconstruction and Motion Analysis of Living Cells. Principles and Practice, 2007, , 365-384.	0.3	4
225	<i>MAT</i> , Mating, Switching, and Pathogenesis in <i>Candida albicans, Candida dubliniensis</i> , and <i>Candida glabrata</i> . , 0, , 213-234.		4
226	The absence of a growth inhibitor during the log phase of growth of Dictyostelium discoideum. Developmental Biology, 1976, 52, 158-160.	0.9	3
227	Mating and virulence of Candida albicans. The Mycologist, 2003, 17, 64-69.	0.5	3
228	New monoclonal antibodies that recognize an unglycosylated, conserved, extracellular region of CD44 in vitro and in vivo, and can block tumorigenesis. PLoS ONE, 2021, 16, e0250175.	1.1	3
229	Mixed Mycotic Infections. , 0, , 333-356.		3
230	High-frequency switching in Dictyostelium. Developmental Biology, 1988, 130, 198-208.	0.9	2
231	Binding Sites in the EFG1 Promoter for Transcription Factors in a Proposed Regulatory Network: A Functional Analysis in the White and Opaque Phases of Candida albicans. G3: Genes, Genomes, Genetics, 2016, 6, 1725-1737.	0.8	2
232	Generating a Battery of Monoclonal Antibodies Against Firefly Luciferase for Dot Blot Analysis, Western Blot Analysis, and Immunostaining of Cells in Culture and Paraffin Sections. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37, 45-51.	0.8	2
233	Role of the <i>WOR1</i> Promoter of Candida albicans in Opaque Commitment. MBio, 2021, 12, e0232021.	1.8	2
234	Signal Transduction Pathways Regulating Switching, Mating and Biofilm Formation in Candida		2

albicans and Related Species. , 2012, , 85-102.

#	Article	IF	CITATIONS
235	Genome-wide technologies — the first half of the story. Current Opinion in Microbiology, 2002, 5, 311-312.	2.3	1
236	Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adhesion and Migration, 2021, 15, 224-248.	1.1	1
237	The Mating-Type Locus and Mating of Candida albicans and Candida glabrata. , 0, , 89-112.		1
238	Memories from a friend. Developmental Dynamics, 1994, 201, 204-205.	0.8	0
239	Quantitative Analysis of Basic Motile Behavior in Amoeboid Cells. Methods in Cell Biology, 2012, 112, 389-402.	0.5	0
240	Genome Plasticity in Candida albicans. , 0, , 303-325.		0
241	Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in <i>Candida albicans</i> ., 0, , 213-220.		0
242	Switching and Mating. , 0, , 75-90.		0