Ricardo Rajsbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4817336/publications.pdf

Version: 2024-02-01

41 papers 4,754 citations

30 h-index 289141 40 g-index

47 all docs

47 docs citations

47 times ranked

8111 citing authors

#	Article	IF	CITATIONS
1	The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Reports, 2022, 38, 110434.	2.9	16
2	Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLoS Pathogens, 2022, 18, e1010532.	2.1	6
3	Ubiquitination of SARS-CoV-2 ORF7a promotes antagonism of interferon response. Cellular and Molecular Immunology, 2021, 18, 746-748.	4.8	102
4	The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses, 2021, 13, 369.	1.5	25
5	VAMP8 Contributes to the TRIM6-Mediated Type I Interferon Antiviral Response during West Nile Virus Infection. Journal of Virology, 2020, 94, .	1.5	24
6	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	2.9	742
7	Topoisomerase III- \hat{I}^2 is required for efficient replication of positive-sense RNA viruses. Antiviral Research, 2020, 182, 104874.	1.9	17
8	TRIM Proteins in Host Defense and Viral Pathogenesis. Current Clinical Microbiology Reports, 2020, 7, 101-114.	1.8	38
9	Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of Virology, 2020, 94,	1.5	303
10	Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature, 2020, 585, 414-419.	13.7	82
11	Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity. Journal of Virology, 2019, 93, .	1.5	47
12	To TRIM or not to TRIM: the balance of host–virus interactions mediated by the ubiquitin system. Journal of General Virology, 2019, 100, 1641-1662.	1.3	45
13	An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction. Nature Communications, 2018, 9, 414.	5.8	231
14	K48-linked polyubiquitination of dengue virus NS1 protein inhibits its interaction with the viral partner NS4B. Virus Research, 2018, 246, 1-11.	1.1	24
15	The Host E3-Ubiquitin Ligase TRIM6 Ubiquitinates the Ebola Virus VP35 Protein and Promotes Virus Replication. Journal of Virology, 2017, 91, .	1.5	68
16	The TRIMendous Role of TRIMs in Virus–Host Interactions. Vaccines, 2017, 5, 23.	2.1	87
17	Intranasal Delivery of Peptide-Morpholinos to Knockdown Influenza Host Factors in Mice. Methods in Molecular Biology, 2017, 1565, 191-199.	0.4	8
18	The Matrix Protein of Nipah Virus Targets the E3-Ubiquitin Ligase TRIM6 to Inhibit the IKKε Kinase-Mediated Type-I IFN Antiviral Response. PLoS Pathogens, 2016, 12, e1005880.	2.1	81

#	Article	IF	CITATIONS
19	Immune and non-immune responses to hepatitis C virus infection. World Journal of Gastroenterology, 2015, 21, 10739.	1.4	20
20	TRIMmunity: The Roles of the TRIM E3-Ubiquitin Ligase Family in Innate Antiviral Immunity. Journal of Molecular Biology, 2014, 426, 1265-1284.	2.0	285
21	InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine and Growth Factor Reviews, 2014, 25, 563-576.	3.2	108
22	Unanchored ubiquitin in virus uncoating. Science, 2014, 346, 427-428.	6.0	16
23	The Interferon Signaling Antagonist Function of Yellow Fever Virus NS5 Protein Is Activated by Type I Interferon. Cell Host and Microbe, 2014, 16, 314-327.	5.1	126
24	A Single Amino Acid Substitution in the Novel H7N9 Influenza A Virus NS1 Protein Increases CPSF30 Binding and Virulence. Journal of Virology, 2014, 88, 12146-12151.	1.5	65
25	Unanchored K48-Linked Polyubiquitin Synthesized by the E3-Ubiquitin Ligase TRIM6 Stimulates the Interferon-IKKε Kinase-Mediated Antiviral Response. Immunity, 2014, 40, 880-895.	6.6	135
26	Viral evasion mechanisms of early antiviral responses involving regulation of ubiquitin pathways. Trends in Microbiology, 2013, 21, 421-429.	3.5	57
27	The E3-Ligase TRIM Family of Proteins Regulates Signaling Pathways Triggered by Innate Immune Pattern-Recognition Receptors. Immunity, 2013, 38, 384-398.	6.6	268
28	Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling. PLoS Pathogens, 2013, 9, e1003265.	2.1	188
29	TPL-2–ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I IFN Production. Journal of Immunology, 2013, 191, 1732-1743.	0.4	84
30	Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 2012, 8, e1003059.	2.1	273
31	HERC6 Is the Main E3 Ligase for Global ISG15 Conjugation in Mouse Cells. PLoS ONE, 2012, 7, e29870.	1.1	92
32	The Transcription Factor NFATp Plays a Key Role in Susceptibility to TB in Mice. PLoS ONE, 2012, 7, e41427.	1.1	6
33	CS03-4. TRIM proteins regulate the innate immune response. Cytokine, 2011, 56, 8-9.	1.4	0
34	Tripartite-motif proteins and innate immune regulation. Current Opinion in Immunology, 2011, 23, 46-56.	2.4	210
35	TPL-2 negatively regulates interferon- \hat{l}^2 production in macrophages and myeloid dendritic cells. Journal of Experimental Medicine, 2009, 206, 1863-1871.	4.2	165
36	Type I interferonâ€dependent and â€independent expression of tripartite motif proteins in immune cells. European Journal of Immunology, 2008, 38, 619-630.	1.6	131

3

#	Article	IF	CITATIONS
37	Activation-dependent intrachromosomal interactions formed by the <i>TNF</i> gene promoter and two distal enhancers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16850-16855.	3.3	71
38	NFAT5 Regulates HIV-1 in Primary Monocytes via a Highly Conserved Long Terminal Repeat Site. PLoS Pathogens, 2006, 2, e130.	2.1	40
39	Transactivator of Transcription from HIV Type 1 Subtype E Selectively Inhibits TNF Gene Expression via Interference with Chromatin Remodeling of the TNF Locus. Journal of Immunology, 2006, 176, 4182-4190.	0.4	32
40	Macrophages and Myeloid Dendritic Cells, but Not Plasmacytoid Dendritic Cells, Produce IL-10 in Response to MyD88- and TRIF-Dependent TLR Signals, and TLR-Independent Signals. Journal of Immunology, 2006, 177, 7551-7558.	0.4	263
41	Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Reports, 2001, 2, 1040-1046.	2.0	42