Rebecca Creamer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4817216/publications.pdf

Version: 2024-02-01

38	783	14	27
papers	citations	h-index	g-index
38	38	38	580
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Production of swainsonine by fungal endophytes of locoweed. Mycological Research, 2003, 107, 980-988.	2.5	144
2	Localization of endophytic <i>Undifilum</i> fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany, 2010, 88, 512-521.	0.5	61
3	Swainsonine Biosynthesis Genes in Diverse Symbiotic and Pathogenic Fungi. G3: Genes, Genomes, Genetics, 2017, 7, 1791-1797.	0.8	60
4	Two new species of <i>Undifilum</i> , fungal endophytes of <i>Astragalus</i> (locoweeds) in the United States. Botany, 2012, 90, 866-875.	0.5	59
5	Production of the Alkaloid Swainsonine by a Fungal Endophyte in the Host <i>Swainsona canescens</i> . Journal of Natural Products, 2013, 76, 1984-1988.	1.5	55
6	Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant Biology, 2019, 19, 253.	1.6	46
7	Characterization of a new curtovirus, pepper yellow dwarf virus, from chile pepper and distribution in weed hosts in New Mexico. Archives of Virology, 2009, 154, 429-436.	0.9	35
8	Physiochemical Characterization and Field Assessment of Lettuce Chlorosis Virus. Plant Disease, 1998, 82, 1248-1252.	0.7	18
9	Moisture and temperature requirements for London rocket (Sisymbrium irio) emergence. Weed Science, 2005, 53, 187-192.	0.8	17
10	Detection and localization of the endophyte <i>Undifilum oxytropis </i> i>in locoweed tissues. Botany, 2012, 90, 1229-1236.	0.5	15
11	Kaolin-based Foliar Reflectant Affects Physiology and Incidence of Beet Curly Top Virus but not Yield of Chile Pepper. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 574-576.	0.5	15
12	Biology of the Transmission of Peach Mosaic Virus by Eriophyes insidiosus (Acari: Eriophyidae). Plant Disease, 1998, 82, 1371-1374.	0.7	14
13	Purification and Characterization of Peach Mosaic Virus. Plant Disease, 1998, 82, 905-908.	0.7	14
14	Development of a transformation system in the swainsonine producing, slow growing endophytic fungus, Undifilum oxytropis. Journal of Microbiological Methods, 2010, 81, 160-165.	0.7	14
15	Potential role for saccharopine reductase in swainsonine metabolism in endophytic fungus, Undifilum oxytropis. Fungal Biology, 2012, 116, 902-909.	1.1	14
16	Seasonal Changes in Undifilum Colonization and Swainsonine Content of Locoweeds. Journal of Chemical Ecology, 2012, 38, 486-495.	0.9	14
17	Evidence for nonpathogenic relationships of <i> Alternaria < /i > section <i> Undifilum < /i > endophytes within three host locoweed plant species. Botany, 2018, 96, 187-200.</i></i>	0.5	14
18	Phylogenetic relationships among New MexicoAstragalus mollissimusvarieties andOxytropisspecies by restriction fragment analysis. Weed Science, 2004, 52, 984-988.	0.8	13

#	Article	IF	CITATIONS
19	A Search for the Phylogenetic Relationship of the Ascomycete Rhizoctonia leguminicola Using Genetic Analysis. Mycopathologia, 2015, 179, 381-389.	1.3	13
20	RNAi-mediated down-regulation of a melanin polyketide synthase (pks1) gene in the fungus Slafractonia leguminicola. World Journal of Microbiology and Biotechnology, 2017, 33, 179.	1.7	13
21	Comparison of the Feeding Behavior and Genetics of Beet Leafhopper, <i>Circulifer tenellus, </i> Populations from California and New Mexico. Southwestern Entomologist, 2010, 35, 241-250.	0.1	12
22	Molecular Characterization of a Fungal Ketide Synthase Gene Among Swainsonine-Producing Alternaria Species in the USA. Current Microbiology, 2020, 77, 2554-2563.	1.0	12
23	Screening Winter-sown Onion Entries for Iris Yellow Spot Virus Tolerance. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 627-632.	0.5	12
24	Solutions to Locoweed Poisoning in New Mexico and the Western United States. Rangelands, 2009, 31, 3-8.	0.9	11
25	Time-course metabolic profiling in alfalfa leaves under Phoma medicaginis infection. PLoS ONE, 2018, 13, e0206641.	1.1	11
26	A Re-examination of the Taxonomic Status of Embellisia astragali. Current Microbiology, 2016, 72, 404-409.	1.0	10
27	Evaluating Winter-sown Onion Entries for Iris yellow spot virus Susceptibility. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1224-1229.	0.5	9
28	Application of Vascular Puncture for Evaluation of Curtovirus Resistance in Chile Pepper and Tomato. Journal of Phytopathology, 2012, 160, 120-128.	0.5	8
29	Microscopic analysis of lead accumulation in tobacco (Nicotiana tabacum var. Turkish) roots and leaves. Journal of Microscopy and Ultrastructure, 2013, 1, 57.	0.1	8
30	Localization of the Swainsonine-Producing Chaetothyriales Symbiont in the Seed and Shoot Apical Meristem in Its Host Ipomoea carnea. Microorganisms, 2022, 10, 545.	1.6	8
31	Identification, Characterization, Pathogenicity, and Distribution of <i>Verticillium alfalfae</i> in Alfalfa Plants in China. Plant Disease, 2019, 103, 1565-1576.	0.7	7
32	Planting date affects phenology of London rocket (Sisymbrium irio) and interaction with beet leafhopper (Circulifer tenellus). Weed Science, 2006, 54, 127-132.	0.8	6
33	Genetic Relationships in the Toxin-Producing Fungal Endophyte, AlternariaÂoxytropis Using Polyketide Synthase and Non-Ribosomal Peptide Synthase Genes. Journal of Fungi (Basel, Switzerland), 2021, 7, 538.	1.5	6
34	Phylogenetic Comparison of Swainsonine Biosynthetic Gene Clusters among Fungi. Journal of Fungi (Basel, Switzerland), 2022, 8, 359.	1.5	6
35	Ectopic growth of the Chaetothyriales fungal symbiont on Ipomoea carnea. Botany, 0, , 1-9.	0.5	5
36	Prediction of Early Season Beet Leafhopper Populations in Southern New Mexico. Plant Health Progress, 2020, 21, 71-76.	0.8	4

3

ARTICLE IF CITATIONS

37 Effect of lead (Pb) on the systemic movement of RNA viruses in tobacco (Nicotiana tabacum var.) Tj ETQq1 1 0.784314 rgBT/Overlock

38 Analysis of Secreted Proteins from Undifilum cinereum by Two Dimensional Gel Electrophoresis and Liquid Chromatography-Mass Spectrometry/Mass Spectrometry. Journal of Animal and Veterinary Advances, 2012, 11, 1881-1889.