Jay Shockey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4816865/publications.pdf Version: 2024-02-01

INV SHOCKEV

#	Article	IF	CITATIONS
1	The Acyl-CoA Synthetase Encoded by LACS2 Is Essential for Normal Cuticle Development in Arabidopsis. Plant Cell, 2004, 16, 629-642.	6.6	310
2	Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnology Journal, 2008, 6, 819-831.	8.3	292
3	Two long-chain acyl-CoA synthetases fromArabidopsis thalianainvolved in peroxisomal fatty acid β-oxidation. Plant Journal, 2002, 32, 93-103.	5.7	158
4	Castor Phospholipid:Diacylglycerol Acyltransferase Facilitates Efficient Metabolism of Hydroxy Fatty Acids in Transgenic Arabidopsis Â. Plant Physiology, 2011, 155, 683-693.	4.8	157
5	Identification of Arabidopsis <i>GPAT9</i> (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis. Plant Physiology, 2016, 170, 163-179.	4.8	150
6	Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231, 1089-1100.	3.2	126
7	Genomeâ€level and biochemical diversity of the acylâ€activating enzyme superfamily in plants. Plant Journal, 2011, 66, 143-160.	5.7	75
8	Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis Â. Plant Physiology, 2015, 168, 36-46.	4.8	51
9	Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production. Scientific Reports, 2016, 6, 22181.	3.3	46
10	Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid Î2-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Plant and Cell Physiology, 2018, 59, 1990-2003.	3.1	45
11	Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic Euphorbiaceae seed oils. Planta, 2019, 249, 1285-1299.	3.2	35
12	Oil-Producing Metabolons Containing DGAT1 Use Separate Substrate Pools from those Containing DGAT2 or PDAT. Plant Physiology, 2020, 184, 720-737.	4.8	35
13	Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii). Plant Science, 2013, 203-204, 79-88.	3.6	31
14	Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues. Plant Molecular Biology, 2015, 89, 113-126.	3.9	27
15	Naturally occurring high oleic acid cottonseed oil: identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desaturase-2. Planta, 2017, 245, 611-622.	3.2	23
16	Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: The peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. Journal of Plant Physiology, 2017, 219, 62-70.	3.5	18
17	Variant Amino Acid Residues Alter the Enzyme Activity of Peanut Type 2 Diacylglycerol Acyltransferases. Frontiers in Plant Science, 2017, 8, 1751.	3.6	16
18	Gene editing in plants: assessing the variables through a simplified case study. Plant Molecular Biology, 2020, 103, 75-89.	3.9	11

JAY SHOCKEY

#	Article	IF	CITATIONS
19	Expression of a lipid-inducible, self-regulating form of Yarrowia lipolytica lipase LIP2 in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 92, 1207-1217.	3.6	10
20	Triacylglycerol biosynthesis in shaded seeds of tung tree (<i>Vernicia fordii</i>) is regulated in part by <i>Homeodomain Leucine Zipper 21</i> . Plant Journal, 2021, 108, 1735-1753.	5.7	10
21	Functional and Predictive Structural Characterization of WRINKLED2, A Unique Oil Biosynthesis Regulator in Avocado. Frontiers in Plant Science, 2021, 12, 648494.	3.6	9
22	Proteomic Analysis of Tung Tree (Vernicia fordii) Oilseeds during the Developmental Stages. Molecules, 2016, 21, 1486.	3.8	8
23	Registration of four upland cotton germplasm lines with elevated levels of seed oil oleic acid. Journal of Plant Registrations, 2020, 14, 64-71.	0.5	7
24	Tung (Vernicia fordii and Vernicia montana). , 2016, , 243-273.		5
25	Cyclopropane fatty acid biosynthesis in plants: phylogenetic and biochemical analysis of Litchi Kennedy pathway and acyl editing cycle genes. Plant Cell Reports, 2018, 37, 1571-1583.	5.6	5
26	Engineering Industrial Oil Biosynthesis. , 2009, , 19-31.		0