IstvÃ;n LÃ;zÃ;r

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/481664/publications.pdf Version: 2024-02-01

ISTVA:N LA:ZA:D

#	Article	IF	CITATIONS
1	The Effect of Heat Treatment of β-Tricalcium Phosphate-Containing Silica-Based Bioactive Aerogels on the Cellular Metabolism and Proliferation of MG63 Cells. Biomedicines, 2022, 10, 662.	3.2	6
2	Environment-Friendly Catalytic Mineralization of Phenol and Chlorophenols with Cu- and Fe- Tetrakis(4-aminophenyl)-porphyrin—Silica Hybrid Aerogels. Gels, 2022, 8, 202.	4.5	2
3	β-Tricalcium phosphate-silica aerogel as an alternative bioactive ceramic for the potential use in dentistry. Advances in Applied Ceramics, 2020, 119, 364-371.	1.1	1
4	Mechanism of hydration of biocompatible silica-casein aerogels probed by NMR and SANS reveal backbone rigidity. Applied Surface Science, 2020, 531, 147232.	6.1	23
5	Rare-Earth Zirconate Ln ₂ Zr ₂ O ₇ (Ln: La, Nd, Gd, and Dy) Powders, Xerogels, and Aerogels: Preparation, Structure, and Properties. Inorganic Chemistry, 2019, 58, 14467-14477.	4.0	23
6	Supercritical CO2 extraction and selective adsorption of aroma materials of selected spice plants in functionalized silica aerogels. Journal of Supercritical Fluids, 2019, 148, 16-23.	3.2	11
7	Heat treatment induced phase transformations in zirconia and yttria-stabilized zirconia monolithic aerogels. Journal of Supercritical Fluids, 2019, 149, 54-63.	3.2	24
8	Controlled release of methotrexate from functionalized silica-gelatin aerogel microparticles applied against tumor cell growth. International Journal of Pharmaceutics, 2019, 558, 396-403.	5.2	34
9	β-Tricalcium phosphate silica aerogel as an alternative bioactive ceramic for the potential use in dentistry. Advances in Applied Ceramics, 2018, 117, 476-484.	1.1	8
10	Prevention of the Aggregation of Nanoparticles during the Synthesis of Nanogold-Containing Silica Aerogels. Gels, 2018, 4, 55.	4.5	14
11	Mechanism of drug release from silica-gelatin aerogel—Relationship between matrix structure and release kinetics. Colloids and Surfaces B: Biointerfaces, 2017, 152, 229-237.	5.0	60
12	Biocompatible silica-gelatin hybrid aerogels covalently labeled with fluorescein. Journal of Non-Crystalline Solids, 2017, 473, 17-25.	3.1	18
13	Effect of the Chemical Composition of Simulated Body Fluids on Aerogel-Based Bioactive Composites. Journal of Composites Science, 2017, 1, 15.	3.0	12
14	A Continuous Extraction and Pumpless Supercritical CO2 Drying System for Laboratory-Scale Aerogel Production. Gels, 2016, 2, 26.	4.5	42
15	Sol-gel synthesis, characterization and catalytic activity of silica aerogels functionalized with copper(II) complexes of cyclen and cyclam. Microporous and Mesoporous Materials, 2016, 234, 392-400.	4.4	14
16	The pore network and the adsorption characteristics of mesoporous silica aerogel: adsorption kinetics on a timescale of seconds. RSC Advances, 2015, 5, 107237-107246.	3.6	24
17	Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. International Journal of Pharmaceutics, 2015, 496, 360-370.	5.2	51
18	Iron oxyhydroxide aerogels and xerogels by controlled hydrolysis of FeCl3·6H2O in organic solvents: stages of formation. RSC Advances, 2015, 5, 72716-72727.	3.6	0

IstvÃin LÃizÃir

#	Article	IF	CITATIONS
19	Photocatalytic performance of highly amorphous titania–silica aerogels with mesopores: The adverse effect of the in situ adsorption of some organic substrates during photodegradation. Applied Surface Science, 2015, 356, 521-531.	6.1	30
20	Synthesis and study of new functionalized silica aerogel poly(methyl methacrylate) composites for biomedical use. Polymer Composites, 2015, 36, 348-358.	4.6	25
21	Iron Oxyhydroxide Aerogels and Xerogels by Hydrolysis of FeCl3 â^™ 6 H2O in Organic Media: Early Stages. Croatica Chemica Acta, 2015, 88, 413-419.	0.4	1
22	Preparation and application of highly porous aerogel-based bioactive materials in dentistry. Frontiers of Materials Science, 2014, 8, 46-52.	2.2	21
23	The examination of aerogel composite artificial bone substitutes in animal models. Biomechanica Hungarica, 2013, , .	0.1	4
24	Determination of the application characteristics of the Slooff-technique with nano-composite bone substitution material by biomechanical tests. Biomechanica Hungarica, 2013, , .	0.1	0
25	Lanthanide Complexes Formed with the Tri- and Tetraacetate Derivatives of Bis(aminomethyl)phosphinic Acid: Equilibrium, Kinetic and NMR Spectroscopic Studies. European Journal of Inorganic Chemistry, 2012, 2012, 2062-2073.	2.0	6
26	Integration of ground aerogel particles as chromatographic stationary phase into microchip. Journal of Chromatography A, 2011, 1218, 1011-1015.	3.7	15
27	Mesoporous silica-calcium phosphate composites for experimental bone substitution. Biomechanica Hungarica, 2010, , .	0.1	1
28	Complexation Properties of the Di-, Tri-, and Tetraacetate Derivatives of Bis(aminomethyl)phosphinic Acid. European Journal of Inorganic Chemistry, 2007, 2007, 701-713.	2.0	19
29	Newly synthesized tetraoxa-diaza crown ether derivatives versus commercialized crown ethers in the separation of positional isomers with capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1164-1170.	2.8	6
30	Enantioselective capillary electrophoretic separation of tryptophane- and tyrosine-methylesters in a dual system with a tetra-oxadiaza-crown-ether derivative and a cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38, 601-608.	2.8	33
31	Development of a capillary electrophoretic method for the separation of diastereoisomers of a new human immunodeficiency virus protease inhibitor. Electrophoresis, 2005, 26, 627-632.	2.4	14
32	Complexation Properties ofN,N′,N′,N′′′-[1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayltetrakis(1-oxoethane-2,1-diyl)]te (H4dotagl). Equilibrium, Kinetic, and Relaxation Behavior of the Lanthanide(III) Complexes. Helvetica Chimica Acta, 2005, 88, 604-617.	trakis[glyc	ine] ₃₅
33	Application of tetraoxadiaza-crown ether derivatives as chiral selector modifiers in capillary electrophoresis. Journal of Chromatography A, 2004, 1028, 325-332.	3.7	37
34	Synthesis and examination of amine-cyanocarboxyboranes, the boron analogues of α-cyanocarboxylic acids: X-ray structural study of the first lactam containing a boron atom in the lactam ring. Journal of Organometallic Chemistry, 2004, 689, 3567-3581.	1.8	33
35	Synthesis of the first amine–cyanocarboxyboranes, isoelectronic analogues of α-cyanocarboxylic acids. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 300-301.	1.3	8
36	Effects of side chain amino nitrogen donor atoms on metal complexation of aminohydroxamic acids: New diaminohydroxamates chelating Ni(ii) more strongly than Fe(iii). Dalton Transactions RSC, 2002, , 2632.	2.3	13

IstvÃin LÃizÃir

#	Article	IF	CITATIONS
37	Synthesis, Conformation and Equilibrium Study of New Piperazine and Azamacrocyclic Ligands with N-(Tetrahydro-2-oxofuran-3-yl) and N-[(Carboxy)(2-hydroxyethyl)methyl] Pendant Arms. European Journal of Organic Chemistry, 2002, 2002, 351-360.	2.4	4
38	Minimal number of chromatographic test parameters for the characterisation of reversed-phase liquid chromatographic stationary phases. Journal of Chromatography A, 2002, 954, 99-114.	3.7	66
39	CONVENIENT SYNTHESIS OF MONO- AND DITOSYLATED 1,4,7-TRIAZACYCLONONANE. Synthetic Communications, 2001, 31, 3141-3144.	2.1	4
40	Formation and Dissociation Kinetics of the Complexes Gd(DOTP)5â^' and Gd(DOTPMB)â^'. European Journal of Inorganic Chemistry, 2001, 2001, 813-820.	2.0	41
41	Synthesis, Potentiometric and ¹ H NMR Study of Protonation and Complex Formation of 1,4,7-Triazacyclononane-1,4-Diacetate. Journal of Coordination Chemistry, 2000, 51, 293-304.	2.2	9
42	Simple and high yielding regioselective synthesis of 1,4,8-tri(carbamoylmethyl)-1,4,8,11-tetraazacyclo-tetradecane hydroiodide. Tetrahedron Letters, 1999, 40, 381-382.	1.4	8
43	Synthesis and characterization of cyanohydroisocyanoborates. Reactivity of the isocyano group towards nucleophiles. Polyhedron, 1998, 17, 3175-3180.	2.2	5
44	Complexation properties of macrocyclic polyoxadiazadiphosphonates. Journal of the Chemical Society Dalton Transactions, 1996, , 1113-1118.	1.1	3
45	Rapid and High Yield Detosylation of Linear and Macrocyclic p-Toluenesulfonamides. Synthetic Communications, 1995, 25, 3181-3185.	2.1	17
46	Synthesis of Ester Derivatives of 1,4,7-Triazacyclononane-1,4,7-tris(methylenephosphonic Acid) and 1,4,7-Triazacyclononane-1,4,7-tris(methyleneethylphosphinic Acid). Synthesis, 1995, 1995, 453-457.	2.3	14
47	Chelating Tendencies of Bioactive Aminophosphonates. Metal-Based Drugs, 1994, 1, 247-264.	3.8	26
48	Bromo derivatives of amine and phosphine complexes of cyanodihydroborane. Synthesis and reactivity. Inorganica Chimica Acta, 1994, 218, 21-26.	2.4	8
49	Synthesis and properties of bis(amine)carboxyhydroboron(1+) cations. Inorganica Chimica Acta, 1994, 223, 155-157.	2.4	5
50	Kinetics of Formation and Dissociation of Lanthanide(III)-DOTA Complexes. Inorganic Chemistry, 1994, 33, 4070-4076.	4.0	199
51	Optimized synthesis, structure, and solution dynamics of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid) (H8DOTP). Inorganic Chemistry, 1992, 31, 4422-4424.	4.0	60
52	NMR and potentiometric studies of 1,4,7-triazacyclononane-N,N′,N″-tris(methylenephosphonate) Tj ETQo	10 0 0 rgBT	Overlock 10

53	In vivo Na-23 MR imaging and spectroscopy of rat brain during TmDOTP5â^' infusion. Journal of Magnetic Resonance Imaging, 1992, 2, 385-391.	3.4	69
54	N,N′,N″-tris(methoxymethyl)-1,4,7-triazacyclononane: a new synthetic tool for the synthesis of tris-N-substituted 1,4,7-triazacyclononane derivatives. Journal of the Chemical Society Chemical Communications, 1991, , 1252-1253.	2.0	5

#	Article	IF	CITATIONS
55	Synthesis and complexation properties of a new macrocyclic polyaza polyphosphinate ligand, DOTEP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methyleneethylphosphinate)). Inorganic Chemistry, 1991, 30, 5016-5019.	4.0	61
56	NOTPME: A31P NMR probe for measurementof divalent cations in biological systems. FEBS Letters, 1991, 280, 121-124.	2.8	14
57	Preparation of N,N,N′,N′-tetramethylethylenediamine adducts of new monosubstituted boranes. Journal of Organometallic Chemistry, 1988, 344, 29-35.	1.8	16