Steve J A Majerus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4816610/publications.pdf

Version: 2024-02-01

		933264	839398
56	521	10	18
papers	citations	h-index	g-index
57	57	57	511
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Determination of Vascular Access Stenosis Location and Severity by Multi-domain Analysis of Blood Sounds., 2021,, 161-194.		O
2	Transurethral versus suprapubic catheterization to test urethral function in rats. Scientific Reports, 2021, 11, 14369.	1.6	2
3	Feasibility of Real-Time Conditional Sacral Neuromodulation Using Wireless Bladder Pressure Sensor. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2067-2075.	2.7	6
4	Wireless Monitoring of Vascular Pressure Using CB-PDMS Based Flexible Strain Sensor. , 2021, 2021, 7011-7015.		1
5	Acoustic Bruit Transduction Interface for Non-Invasive Vascular Access Monitoring. , 2021, 2021, 7280-7283.		O
6	Development of Foot Displacement Detection Algorithm for Power Wheelchair Footplate Pressure and Positioning., 2021, 2021, 7054-7057.		0
7	A 100-V Withstanding Analog-Front-End for High-Resolution Intravascular Ultrasound Imaging. , 2021, 2021, 3251-3254.		2
8	Flexible Body-Conformal Ultrasound Patches for Image-Guided Neuromodulation. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 305-318.	2.7	42
9	Nonâ€hermetic packaging of biomedical microsystems from a materials perspective: A review. Medical Devices & Sensors, 2020, 3, e10082.	2.7	11
10	Noninvasive Vascular Blood Sound Monitoring Through Flexible Microphone., 2020,, 35-67.		1
11	SPARC: Catheterâ€Free Wireless Measurement of Feline Bladder Pressures Using Intravesical Sensor. FASEB Journal, 2020, 34, 1-1.	0.2	1
12	SPARC: Wireless, Continuous Monitoring of Bowel State and Function. FASEB Journal, 2020, 34, 1-1.	0.2	4
13	Flexible, Skin Coupled Microphone Array for Point of Care Vascular Access Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1494-1505.	2.7	10
14	Vascular Pressure–Flow Measurement Using CB-PDMS Flexible Strain Sensor. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1451-1461.	2.7	36
15	Ambulatory urodynamic monitoring: state of the art and future directions. Nature Reviews Urology, 2019, 16, 291-301.	1.9	30
16	Vascular Stenosis Detection Using Temporal-Spectral Differences in Correlated Acoustic Measurements. , 2019, 2019, .		1
17	Is submucosal bladder pressure monitoring feasible?. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 100-113.	1.0	18
18	Editorial Comment. Urology, 2018, 111, 236.	0.5	0

#	Article	IF	CITATIONS
19	Skin-Coupled PVDF Microphones for Noninvasive Vascular Blood Sound Monitoring. , 2018, 2018, .		4
20	Stenosis Characterization and Identification for Dialysis Vascular Access. , 2018, 2018, .		5
21	Vascular Graft Pressure-Flow Monitoring Using 3D Printed MWCNT-PDMS Strain Sensors. , 2018, 2018, 2989-2992.		11
22	Bruit-enhancing phonoangiogram filter using sub-band autoregressive linear predictive coding., 2018, 2018, 1416-1419.		7
23	Power Wheelchair Footplate Pressure and Positioning Sensor. , 2018, 2018, 4367-4370.		2
24	A Conductance-Based Sensor to Estimate Bladder Volume in Felines., 2018, 2018, 1592-1595.		2
25	Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research., 2018, 2018, .		3
26	Sensors Selection for Continuous Monitoring of Bowel State and Activity., 2018, 2018, 2997-3000.		3
27	Design Tradeoffs in Bioimplantable Devices: A Case Study with Bladder Pressure Monitoring. , 2018, , .		1
28	Tunable and Lightweight On-Chip Event Detection for Implantable Bladder Pressure Monitoring Devices. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1303-1312.	2.7	11
29	Catheter-mounted CMOS front-ends for broadband intravascular ultrasonic imaging. , 2017, 2017, 373-376.		4
30	Suburothelial Bladder Contraction Detection with Implanted Pressure Sensor. PLoS ONE, 2017, 12, e0168375.	1.1	32
31	Embedded silicon odometers for monitoring the aging of high-temperature integrated circuits. , 2017, , .		3
32	Ultralow-power data compression for implantable bladder pressure monitor: Algorithm and hardware implementation. , 2016, , .		1
33	Flexible, structured MWCNT/PDMS sensor for chronic vascular access monitoring. , 2016, 2016, .		6
34	Wireless bladder pressure monitor for closed-loop bladder neuromodulation. , 2016, 2016, .		10
35	Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data., 2016, 2016, 5789-5792.		7
36	PD24-08 WIRELESS IMPLANTABLE RECHARGEABLE BLADDER PRESSURE SENSOR: CYSTOSCOPIC IMPLANTATION AND AMBULATORY DATA COLLECTION. Journal of Urology, 2015, 193, .	0.2	1

#	Article	IF	Citations
37	Long-term evaluation of a non-hermetic micropackage technology for MEMS-based, implantable pressure sensors., 2015, 2015, 484-487.		9
38	Automatic drift cancellation of implanted bladder pressure sensor. , 2015, 2015, .		1
39	Wireless implantable pressure monitor for conditional bladder neuromodulation. , 2015, 2015, .		12
40	Real-Time Classification of Bladder Events for Effective Diagnosis and Treatment of Urinary Incontinence. IEEE Transactions on Biomedical Engineering, 2015, 63, 1-1.	2.5	27
41	Wireless battery charge management for implantable pressure sensor. , 2014, , .		7
42	A 200 °C Custom CMOS Chipset for Distributed Control Applications. , 2014, , .		1
43	A 200 °C Quad-Output Buck Type Switched Mode Power Supply IC. Additional Conferences (Device) Tj ETQq1 1	l 0,78431	4 rgBT /Over
44	A 200 °C Motor Control ASIC. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2014, 2014, 000159-000164.	0.2	0
45	Design and long-term operation of high-temperature, bulk-CMOS integrated circuits for instrumentation and control. , 2013, , .		13
46	Power management circuits for a 15-μA, implantable pressure sensor., 2013,,.		4
47	Non-Hermetic Micropackage for Chronic Implantable Systems. International Symposium on Microelectronics, 2013, 2013, 000166-000170.	0.3	12
48	Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring. ACM Journal on Emerging Technologies in Computing Systems, 2012, 8, 1-13.	1.8	50
49	High-Temperature, Bulk-CMOS Integrated Circuits for a Distributed Control System-Performance Results. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2012, 2012, 000002-000009.	0.2	2
50	Low-Power Wireless Micromanometer System for Acute and Chronic Bladder-Pressure Monitoring. IEEE Transactions on Biomedical Engineering, 2011, 58, 763-767.	2.5	67
51	789 FEASIBILITY OF SUBMUCOSAL BLADDER PRESSURE SENSING. Journal of Urology, 2011, 185, .	0.2	O
52	Distributed Engine Control Design Considerations., 2010,,.		10
53	High-Temperature, Bulk-CMOS Integrated Circuits for a Distributed FADEC System. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2010, 2010, 000047-000053.	0.2	5
54	Wireless micromanometer system for chronic bladder pressure monitoring. , 2009, , .		16

#	Article	IF	CITATIONS
55	Telemetry platform for deeply implanted biomedical sensors. , 2008, , .		5
56	High-Temperature, Distributed Control using Custom CMOS ASICs. , 0, , .		2