Steve J A Majerus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4816610/publications.pdf Version: 2024-02-01

STEVE LA MAIEDIIS

#	Article	IF	CITATIONS
1	Low-Power Wireless Micromanometer System for Acute and Chronic Bladder-Pressure Monitoring. IEEE Transactions on Biomedical Engineering, 2011, 58, 763-767.	2.5	67
2	Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring. ACM Journal on Emerging Technologies in Computing Systems, 2012, 8, 1-13.	1.8	50
3	Flexible Body-Conformal Ultrasound Patches for Image-Guided Neuromodulation. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 305-318.	2.7	42
4	Vascular Pressure–Flow Measurement Using CB-PDMS Flexible Strain Sensor. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1451-1461.	2.7	36
5	Suburothelial Bladder Contraction Detection with Implanted Pressure Sensor. PLoS ONE, 2017, 12, e0168375.	1.1	32
6	Ambulatory urodynamic monitoring: state of the art and future directions. Nature Reviews Urology, 2019, 16, 291-301.	1.9	30
7	Real-Time Classification of Bladder Events for Effective Diagnosis and Treatment of Urinary Incontinence. IEEE Transactions on Biomedical Engineering, 2015, 63, 1-1.	2.5	27
8	Is submucosal bladder pressure monitoring feasible?. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 100-113.	1.0	18
9	Wireless micromanometer system for chronic bladder pressure monitoring. , 2009, , .		16
10	Design and long-term operation of high-temperature, bulk-CMOS integrated circuits for instrumentation and control. , 2013, , .		13
11	Wireless implantable pressure monitor for conditional bladder neuromodulation. , 2015, 2015, .		12
12	Non-Hermetic Micropackage for Chronic Implantable Systems. International Symposium on Microelectronics, 2013, 2013, 000166-000170.	0.3	12
13	Tunable and Lightweight On-Chip Event Detection for Implantable Bladder Pressure Monitoring Devices. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 1303-1312.	2.7	11
14	Vascular Graft Pressure-Flow Monitoring Using 3D Printed MWCNT-PDMS Strain Sensors. , 2018, 2018, 2989-2992.		11
15	Nonâ€hermetic packaging of biomedical microsystems from a materials perspective: A review. Medical Devices & Sensors, 2020, 3, e10082.	2.7	11
16	Distributed Engine Control Design Considerations. , 2010, , .		10
17	Wireless bladder pressure monitor for closed-loop bladder neuromodulation. , 2016, 2016, .		10
18	Flexible, Skin Coupled Microphone Array for Point of Care Vascular Access Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1494-1505.	2.7	10

Steve J A Majerus

#	Article	IF	CITATIONS
19	Long-term evaluation of a non-hermetic micropackage technology for MEMS-based, implantable pressure sensors. , 2015, 2015, 484-487.		9
20	Wireless battery charge management for implantable pressure sensor. , 2014, , .		7
21	Real-time, autonomous bladder event classification and closed-loop control from single-channel pressure data. , 2016, 2016, 5789-5792.		7
22	Bruit-enhancing phonoangiogram filter using sub-band autoregressive linear predictive coding. , 2018, 2018, 1416-1419.		7
23	Flexible, structured MWCNT/PDMS sensor for chronic vascular access monitoring. , 2016, 2016, .		6
24	Feasibility of Real-Time Conditional Sacral Neuromodulation Using Wireless Bladder Pressure Sensor. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 2067-2075.	2.7	6
25	Telemetry platform for deeply implanted biomedical sensors. , 2008, , .		5
26	Stenosis Characterization and Identification for Dialysis Vascular Access. , 2018, 2018, .		5
27	High-Temperature, Bulk-CMOS Integrated Circuits for a Distributed FADEC System. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2010, 2010, 000047-000053.	0.2	5
28	Power management circuits for a 15-μA, implantable pressure sensor. , 2013, , .		4
29	Catheter-mounted CMOS front-ends for broadband intravascular ultrasonic imaging. , 2017, 2017, 373-376.		4
30	Skin-Coupled PVDF Microphones for Noninvasive Vascular Blood Sound Monitoring. , 2018, 2018, .		4
31	SPARC: Wireless, Continuous Monitoring of Bowel State and Function. FASEB Journal, 2020, 34, 1-1.	0.2	4
32	Embedded silicon odometers for monitoring the aging of high-temperature integrated circuits. , 2017, ,		3
33	Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research. , 2018, 2018, .		3
34	Sensors Selection for Continuous Monitoring of Bowel State and Activity. , 2018, 2018, 2997-3000.		3
35	High-Temperature, Distributed Control using Custom CMOS ASICs. , 0, , .		2

Power Wheelchair Footplate Pressure and Positioning Sensor. , 2018, 2018, 4367-4370.

2

STEVE J A MAJERUS

#	Article	IF	CITATIONS
37	A Conductance-Based Sensor to Estimate Bladder Volume in Felines. , 2018, 2018, 1592-1595.		2
38	Transurethral versus suprapubic catheterization to test urethral function in rats. Scientific Reports, 2021, 11, 14369.	1.6	2
39	High-Temperature, Bulk-CMOS Integrated Circuits for a Distributed Control System-Performance Results. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2012, 2012, 000002-000009.	0.2	2
40	A 100-V Withstanding Analog-Front-End for High-Resolution Intravascular Ultrasound Imaging. , 2021, 2021, 3251-3254.		2
41	A 200 $\hat{A}^{\circ}C$ Custom CMOS Chipset for Distributed Control Applications. , 2014, , .		1
42	PD24-08 WIRELESS IMPLANTABLE RECHARGEABLE BLADDER PRESSURE SENSOR: CYSTOSCOPIC IMPLANTATION AND AMBULATORY DATA COLLECTION. Journal of Urology, 2015, 193, .	0.2	1
43	Automatic drift cancellation of implanted bladder pressure sensor. , 2015, 2015, .		1
44	Ultralow-power data compression for implantable bladder pressure monitor: Algorithm and hardware implementation. , 2016, , .		1
45	Design Tradeoffs in Bioimplantable Devices: A Case Study with Bladder Pressure Monitoring. , 2018, , .		1
46	Vascular Stenosis Detection Using Temporal-Spectral Differences in Correlated Acoustic Measurements. , 2019, 2019, .		1
47	Noninvasive Vascular Blood Sound Monitoring Through Flexible Microphone. , 2020, , 35-67.		1
48	SPARC: Catheterâ€Free Wireless Measurement of Feline Bladder Pressures Using Intravesical Sensor. FASEB Journal, 2020, 34, 1-1.	0.2	1
49	Wireless Monitoring of Vascular Pressure Using CB-PDMS Based Flexible Strain Sensor. , 2021, 2021, 7011-7015.		1
50	789 FEASIBILITY OF SUBMUCOSAL BLADDER PRESSURE SENSING. Journal of Urology, 2011, 185, .	0.2	0
51	Editorial Comment. Urology, 2018, 111, 236.	0.5	0
52	Determination of Vascular Access Stenosis Location and Severity by Multi-domain Analysis of Blood Sounds. , 2021, , 161-194.		0
53	A 200 °C Quad-Output Buck Type Switched Mode Power Supply IC. Additional Conferences (Device) Tj ETQq1	1 0,78431 0.2	4 rgBT /Overl
54	A 200 °C Motor Control ASIC. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2014, 2014, 000159-000164.	0.2	0

#	Article	IF	CITATIONS
55	Acoustic Bruit Transduction Interface for Non-Invasive Vascular Access Monitoring. , 2021, 2021, 7280-7283.		0
56	Development of Foot Displacement Detection Algorithm for Power Wheelchair Footplate Pressure and Positioning. , 2021, 2021, 7054-7057.		0