Seid Reza Falsafi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4816320/publications.pdf

Version: 2024-02-01

22 937 12 papers citations h-index

22 22 926
all docs docs citations times ranked citing authors

15

g-index

#	Article	IF	CITATIONS
1	Seed gum-based delivery systems and their application in encapsulation of bioactive molecules. Critical Reviews in Food Science and Nutrition, 2023, 63, 9937-9960.	5.4	8
2	The role of emulsification strategy on the electrospinning of \hat{l}^2 -carotene-loaded emulsions stabilized by gum Arabic and whey protein isolate. Food Chemistry, 2022, 374, 131826.	4.2	32
3	Lycopene nanodelivery systems; recent advances. Trends in Food Science and Technology, 2022, 119, 378-399.	7.8	22
4	Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacological Research, 2022, 178, 106164.	3.1	30
5	Application of multi-criteria decision-making for optimizing the formulation of functional cookies containing different types of resistant starches: A physicochemical, organoleptic, in-vitro and in-vivo study. Food Chemistry, 2022, 393, 133376.	4.2	6
6	Encapsulation of bioactives within electrosprayed $\hat{I}^{\!\scriptscriptstyle 2}\!\!$ -carrageenan nanoparticles. Carbohydrate Polymers, 2022, 294, 119761.	5.1	8
7	Possible health risks associated with nanostructures in food. , 2021, , 31-118.		2
8	Design and formulation of nano/micro-encapsulated natural bioactive compounds for food applications. , 2021, , 1-41.		11
9	Covalent and Electrostatic Protein-Polysaccharide Systems for Encapsulation of Nutraceuticals., 2021,, 818-831.		0
10	Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends in Food Science and Technology, 2021, 108, 297-325.	7.8	77
11	Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Advances in Colloid and Interface Science, 2021, 290, 102384.	7.0	36
12	Evaluating the structural properties of bioactiveâ€loaded nanocarriers with modern analytical tools. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3266-3322.	5.9	26
13	Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Advances in Colloid and Interface Science, 2020, 280, 102166.	7.0	69
14	Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science and Technology, 2020, 100, 190-209.	7.8	96
15	Transmission electron microscopy (TEM) of nanoencapsulated food ingredients., 2020,, 53-82.		5
16	X-ray diffraction (XRD) of nanoencapsulated food ingredients., 2020,, 271-293.		13
17	Nanostructures of starch for encapsulation of food ingredients. , 2019, , 419-462.		5
18	Nano-helices of amylose for encapsulation of food ingredients. , 2019, , 463-491.		3

#	ARTICLE	IF	CITATIONS
19	Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science and Technology, 2019, 88, 397-415.	7.8	131
20	Nanoencapsulation of carotenoids within lipid-based nanocarriers. Journal of Controlled Release, 2019, 298, 38-67.	4.8	205
21	Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities. Ultrasonics Sonochemistry, 2019, 53, 110-119.	3.8	39
22	Preparation of physically modified oat starch with different sonication treatments. Food Hydrocolloids, 2019, 89, 311-320.	5.6	113