Thomas E Taylor-Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4816247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research Opportunities in Autonomic Neural Mechanisms of CardiopulmonaryÂRegulation. JACC Basic To Translational Science, 2022, 7, 265-293.	4.1	17
2	Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. ENeuro, 2022, 9, ENEURO.0026-22.2022.	1.9	14
3	SPARC: Intersectional labeling of vagal afferent nerve subsets using Cre and FLP dependent dual reporter strain. FASEB Journal, 2022, 36, .	0.5	0
4	SPARC: Development of a TRPA1 Reporter Mouse Model. FASEB Journal, 2022, 36, .	0.5	0
5	Activation of Coldâ€ S ensitive Afferents Inhibits Aberrant Irritantâ€evoked Cardiopulmonary Reflexes in the Spontaneously Hypertensive (SH) Rat. FASEB Journal, 2022, 36, .	0.5	0
6	SPARC: Visualization of geneticallyâ€labeled vagal and spinal afferent subsets innervating the mouse lung. FASEB Journal, 2022, 36, .	0.5	0
7	Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neuroscience Letters, 2021, 742, 135505.	2.1	11
8	Differential sensitivity of cinnamaldehyde-evoked calcium fluxes to ruthenium red in guinea pig and mouse trigeminal sensory neurons. BMC Research Notes, 2021, 14, 127.	1.4	0
9	Irritant Inhalation Evokes P Wave Morphological Changes in Spontaneously Hypertensive Rats via Reflex Modulation of the Autonomic Nervous System. Frontiers in Physiology, 2021, 12, 642299.	2.8	5
10	Contribution of tetrodotoxin-sensitive, voltage-gated sodium channels (Na _V 1) to action potential discharge from mouse esophageal tension mechanoreceptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R672-R686.	1.8	2
11	Functional evidence of distinct electrophile-induced activation states of the ion channel TRPA1. Biochemistry and Biophysics Reports, 2021, 27, 101044.	1.3	1
12	Vague no more: Evidence of divergent central pathways of sensory nerves innervating the human airways. Journal of Physiology, 2020, 598, 5597-5598.	2.9	1
13	Air Pollution-Induced Autonomic Modulation. Physiology, 2020, 35, 363-374.	3.1	11
14	Aldosterone up-regulates voltage-gated potassium currents and NKCC1 protein membrane fractions. Scientific Reports, 2020, 10, 15604.	3.3	12
15	Development of a Mouse Reporter Strain for the Purinergic P2X ₂ Receptor. ENeuro, 2020, 7, ENEURO.0203-20.2020.	1.9	15
16	Mapping of Sensory Nerve Subsets within the Vagal Ganglia and the Brainstem Using Reporter Mice for Pirt, TRPV1, 5-HT3, and Tac1 Expression. ENeuro, 2020, 7, ENEURO.0494-19.2020.	1.9	47
17	Antimycin A increases bronchopulmonary C-fiber excitability via protein kinase C alpha. Respiratory Physiology and Neurobiology, 2020, 278, 103446.	1.6	3
18	Nociceptive pulmonaryâ€cardiac reflexes are altered in the spontaneously hypertensive rat. Journal of Physiology, 2019, 597, 3255-3279.	2.9	13

#	Article	IF	CITATIONS
19	Antimycin A-induced mitochondrial dysfunction activates vagal sensory neurons via ROS-dependent activation of TRPA1 and ROS-independent activation of TRPV1. Brain Research, 2019, 1715, 94-105.	2.2	18
20	A nervous S1P of the lung: activation of airway nerves by sphingosineâ€1â€phosphate. Journal of Physiology, 2019, 597, 1785-1786.	2.9	0
21	Differential Activation of TRPA1 by Diesel Exhaust Particles: Relationships between Chemical Composition, Potency, and Lung Toxicity. Chemical Research in Toxicology, 2019, 32, 1040-1050.	3.3	16
22	Mitochondrial dysfunction increases bronchopulmonary Câ€fiber excitability via PKC alpha signaling. FASEB Journal, 2019, 33, 719.6.	0.5	0
23	Development of a TRPA1 Reporter Mouse Model. FASEB Journal, 2019, 33, 824.12.	0.5	Ο
24	Adeno Associated Virus Mediated Neural Tracing of TRPV1â€Expressing Airway Afferent Nerves. FASEB Journal, 2019, 33, 546.5.	0.5	0
25	Complete NEM Modification of Highly Reactive Cysteines Induces Full TRPA1 Activation. FASEB Journal, 2019, 33, 824.11.	0.5	0
26	Altered Cardiopulmonary Reflexes Evoked by Irritants in Spontaneously Hypertensive Rats – Effect of Route of Administration and Anesthetics. FASEB Journal, 2019, 33, 854.4.	0.5	0
27	Development of a P2X 2 Reporter Mouse Model. FASEB Journal, 2019, 33, 546.6.	0.5	0
28	Carotid chemoreceptors tune breathing via multipath routing: reticular chain and loop operations supported by parallel spike train correlations. Journal of Neurophysiology, 2018, 119, 700-722.	1.8	9
29	Improving redox sensitivity of roGFP1 by incorporation of selenocysteine at position 147. BMC Research Notes, 2018, 11, 827.	1.4	6
30	Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production. PLoS ONE, 2018, 13, e0197106.	2.5	11
31	The local environment of cysteine 621 determines the rapid electrophilic adduction and activation of hTRPA1. FASEB Journal, 2018, 32, 750.7.	0.5	0
32	Mitochondrial ROS activates PKC alpha translocation to the membrane of vagal sensory neurons FASEB Journal, 2018, 32, 864.3.	0.5	0
33	Modulation of mesenteric collecting lymphatic contractions by Ïf ₁ -receptor activation and nitric oxide production. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H839-H853.	3.2	15
34	Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium, 2016, 60, 155-162.	2.4	45
35	The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1. Journal of General Physiology, 2016, 147, 451-465.	1.9	47
36	Peripheral neural circuitry in cough. Current Opinion in Pharmacology, 2015, 22, 9-17.	3.5	12

THOMAS E TAYLOR-CLARK

#	Article	IF	CITATIONS
37	Oxidative stress as activators of sensory nerves for cough. Pulmonary Pharmacology and Therapeutics, 2015, 35, 94-99.	2.6	13
38	Thy1.2 YFP-16 Transgenic Mouse Labels a Subset of Large-Diameter Sensory Neurons that Lack TRPV1 Expression. PLoS ONE, 2015, 10, e0119538.	2.5	16
39	Sensory Nerve Terminal Mitochondrial Dysfunction Induces Hyperexcitability in Airway Nociceptors via Protein Kinase C. Molecular Pharmacology, 2014, 85, 839-848.	2.3	25
40	Mechanisms underlying the neuronal-based symptoms of allergy. Journal of Allergy and Clinical Immunology, 2014, 133, 1521-1534.	2.9	142
41	Store-operated calcium entry in vagal sensory nerves is independent of Orai channels. Brain Research, 2013, 1503, 7-15.	2.2	6
42	Sensory Nerve Terminal Mitochondrial Dysfunction Activates Airway Sensory Nerves via Transient Receptor Potential (TRP) Channels. Molecular Pharmacology, 2013, 83, 1007-1019.	2.3	46
43	Reductions in External Divalent Cations Evoke Novel Voltage-Gated Currents in Sensory Neurons. PLoS ONE, 2012, 7, e31585.	2.5	5
44	Sensing pulmonary oxidative stress by lung vagal afferents. Respiratory Physiology and Neurobiology, 2011, 178, 406-413.	1.6	61
45	Histamine in Allergic Rhinitis. Advances in Experimental Medicine and Biology, 2010, 709, 33-41.	1.6	16
46	Ozone activates airway nerves via the selective stimulation of TRPA1 ion channels. Journal of Physiology, 2010, 588, 423-433.	2.9	112
47	Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. Journal of Physiology, 2010, 588, 4769-4783.	2.9	132
48	Transient Receptor Potential Ankyrin 1 Mediates Toluene Diisocyanate–Evoked Respiratory Irritation. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 756-762.	2.9	96
49	Nitrooleic Acid, an Endogenous Product of Nitrative Stress, Activates Nociceptive Sensory Nerves via the Direct Activation of TRPA1. Molecular Pharmacology, 2009, 75, 820-829.	2.3	164
50	TRPA1: A potential target for anti-tussive therapy. Pulmonary Pharmacology and Therapeutics, 2009, 22, 71-74.	2.6	42
51	Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. Journal of Physiology, 2008, 586, 1595-1604.	2.9	259
52	Insights into the mechanisms of histamine-induced inflammation in the nasal mucosa. Pulmonary Pharmacology and Therapeutics, 2008, 21, 455-460.	2.6	13
53	Prostaglandin-Induced Activation of Nociceptive Neurons via Direct Interaction with Transient Receptor Potential A1 (TRPA1). Molecular Pharmacology, 2008, 73, 274-281.	2.3	261
54	Transduction mechanisms in airway sensory nerves. Journal of Applied Physiology, 2006, 101, 950-959.	2.5	95

#	Article	IF	CITATIONS
55	Histamine receptors that influence blockage of the normal human nasal airway. British Journal of Pharmacology, 2005, 144, 867-874.	5.4	42
56	Histamine-mediated mechanisms in the human nasal airway. Current Opinion in Pharmacology, 2005, 5, 214-220.	3.5	22
57	Nasal sensory nerve populations responding to histamine and capsaicin. Journal of Allergy and Clinical Immunology, 2005, 116, 1282-1288.	2.9	65