Martin K Thomsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4816018/publications.pdf

Version: 2024-02-01

_		304743	395702
37	1,838	22	33
papers	citations	h-index	g-index
37	37	37	3486
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sensing of HSV-1 by the cGASâ \in "STING pathway in microglia orchestrates antiviral defence in the CNS. Nature Communications, 2016, 7, 13348.	12.8	245
2	Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses. Nature Communications, 2016, 7, 10680.	12.8	169
3	Lack of immunological DNA sensing in hepatocytes facilitates hepatitis B virus infection. Hepatology, 2016, 64, 746-759.	7.3	137
4	SOX9 Elevation in the Prostate Promotes Proliferation and Cooperates with <i>PTEN</i> Loss to Drive Tumor Formation. Cancer Research, 2010, 70, 979-987.	0.9	119
5	Intracellular bacteria engage a STING–TBK1–MVB12b pathway to enable paracrine cGAS–STING signalling. Nature Microbiology, 2019, 4, 701-713.	13.3	100
6	Regulation of Steatohepatitis and PPARÎ ³ Signaling by Distinct AP-1 Dimers. Cell Metabolism, 2014, 19, 84-95.	16.2	99
7	\hat{l}^2 -Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma. PLoS Genetics, 2013, 9, e1003180.	3.5	89
8	STEEP mediates STING ER exit and activation of signaling. Nature Immunology, 2020, 21, 868-879.	14.5	82
9	Sox9 is required for prostate development. Developmental Biology, 2008, 316, 302-311.	2.0	81
10	Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation. Journal of Experimental Medicine, 2017, 214, 1387-1409.	8.5	80
11	Brain immune cells undergo cGAS/STING-dependent apoptosis during herpes simplex virus type 1 infection to limit type I IFN production. Journal of Clinical Investigation, 2021, 131, .	8.2	61
12	An innate antiviral pathway acting before interferons at epithelial surfaces. Nature Immunology, 2016, 17, 150-158.	14.5	59
13	The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma. Oncogene, 2020, 39, 1652-1664.	5.9	52
14	JUNB/AP-1 controls IFN- \hat{l}^3 during inflammatory liver disease. Journal of Clinical Investigation, 2013, 123, 5258-5268.	8.2	44
15	STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice. PLoS Pathogens, 2018, 14, e1006976.	4.7	43
16	The role of Sox9 in prostate development. Differentiation, 2008, 76, 728-735.	1.9	41
17	Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. Journal of Clinical Investigation, 2018, 129, 388-405.	8.2	39
18	Loss of JUNB/AP-1 promotes invasive prostate cancer. Cell Death and Differentiation, 2015, 22, 574-582.	11.2	37

#	Article	IF	Citations
19	Brca2 and Trp53 Deficiency Cooperate in the Progression of Mouse Prostate Tumourigenesis. PLoS Genetics, 2010, 6, e1000995.	3.5	35
20	A genetically inducible porcine model of intestinal cancer. Molecular Oncology, 2017, 11, 1616-1629.	4.6	34
21	Life-threatening viral disease in a novel form of autosomal recessive <i>IFNAR2</i> deficiency in the Arctic. Journal of Experimental Medicine, 2022, 219, .	8.5	33
22	Activator protein 1 transcription factor fos-related antigen 1 (fra-1) is dispensable for murine liver fibrosis, but modulates xenobiotic metabolism. Hepatology, 2014, 59, 261-273.	7.3	25
23	FRMD6 has tumor suppressor functions in prostate cancer. Oncogene, 2021, 40, 763-776.	5.9	24
24	In vivo CRISPR inactivation of Fos promotes prostate cancer progression by altering the associated AP-1 subunit Jun. Oncogene, 2021, 40, 2437-2447.	5.9	21
25	Comparative Analysis of Stk11/Lkb1 versus Pten Deficiency in Lung Adenocarcinoma Induced by CRISPR/Cas9. Cancers, 2021, 13, 974.	3.7	14
26	The CRISPR/Cas9 Minipigâ€"A Transgenic Minipig to Produce Specific Mutations in Designated Tissues. Cancers, 2021, 13, 3024.	3.7	12
27	Targeting AP-1 transcription factors by CRISPR in the prostate. Oncotarget, 2021, 12, 1956-1961.	1.8	11
28	Three-dimensionalÂculture models to study glioblastoma â€" current trends and future perspectives. Current Opinion in Pharmacology, 2021, 61, 91-97.	3.5	11
29	Treatment Represents a Key Driver of Metastatic Cancer Evolution. Cancer Research, 2022, 82, 2918-2927.	0.9	11
30	Essential role of autophagy in restricting poliovirus infection revealed by identification of an ATG7 defect in a poliomyelitis patient. Autophagy, 2021, 17, 2449-2464.	9.1	10
31	Virus Delivery of CRISPR Guides to the Murine Prostate for Gene Alteration. Journal of Visualized Experiments, 2018, , .	0.3	8
32	Pancreas specific expression of oncogenes in a porcine model. Transgenic Research, 2017, 26, 603-612.	2.4	6
33	<scp>cAIMP</scp> administration in humanized mice induces a chimerizationâ€levelâ€dependent <scp>STING</scp> response. Immunology, 2019, 157, 163-172.	4.4	6
34	Genetically Engineered Pig Models for Human Diseases using ZFNs, TALENs and CRISPR/Cas9., 0,, 110-131.		0
35	Abstract 2344: The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma., 2019,,.		0
36	Abstract 3706: The CRISPR-Cas9 minipig: A transgenic toolbox pig to produce specific genome editing in designated tissues., 2019,,.		0

3

ARTICLE IF CITATIONS

Abstract 4632: A new mouse model for rapid identification of key factors driving prostate cancer progression and invasiveness., 2019,,... o