
Jian Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4815036/publications.pdf Version: 2024-02-01

LIAN DENC

#	Article	IF	CITATIONS
1	Microreaction Technology for Synthetic Chemistry. Chinese Journal of Chemistry, 2019, 37, 161-170.	2.6	34
2	Reaction kinetics determination based on microfluidic technology. Chinese Journal of Chemical Engineering, 2022, 41, 49-72.	1.7	31
3	General rules of bubble formation in viscous liquids in a modified step T-junction microdevice. Chemical Engineering Science, 2021, 239, 116621.	1.9	30
4	A comprehensive study of droplet formation in a capillary embedded step T-junction: From squeezing to jetting. Chemical Engineering Journal, 2022, 427, 132067.	6.6	26
5	Determination of nitration kinetics of p-Nitrotoluene with a homogeneously continuous microflow. Chemical Engineering Science, 2022, 247, 117041.	1.9	24
6	Highâ€frequency formation of bubble with short length in a capillary embedded step Tâ€junction microdevice. AICHE Journal, 2021, 67, e17376.	1.8	23
7	Determination of Dynamic Interfacial Tension during the Generation of Tiny Droplets in the Liquid–Liquid Jetting Flow Regime. Langmuir, 2020, 36, 13633-13641.	1.6	22
8	Geometric Effect on Gas–Liquid Bubbly Flow in Capillary-Embedded T-Junction Microchannels. Industrial & Engineering Chemistry Research, 2021, 60, 4735-4744.	1.8	20
9	High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels. Journal of Flow Chemistry, 2020, 10, 271-282.	1.2	18
10	Determination of the kinetics of chlorobenzene nitration using a homogeneously continuous microflow. AICHE Journal, 2022, 68, .	1.8	18
11	Taylor Bubble Generation Rules in Liquids with a Higher Viscosity in a T-Junction Microchannel. Industrial & Engineering Chemistry Research, 2022, 61, 2623-2632.	1.8	18
12	Mechanism and kinetics of epoxide ring-opening with carboxylic acids catalyzed by the corresponding carboxylates. Chemical Engineering Science, 2021, 242, 116746.	1.9	17
13	Kinetic study of <i>o</i> -nitrotoluene nitration in a homogeneously continuous microflow. Reaction Chemistry and Engineering, 2021, 7, 111-122.	1.9	16
14	Formation Mechanism of Monodispersed Polysilsesquioxane Spheres in One-Step Sol–Gel Method. Langmuir, 2021, 37, 5878-5885.	1.6	13
15	Tetramethylammonium neodecanoate as a recyclable catalyst for acidolysis reaction of epichlorohydrin with neodecanoic acid. Journal of Catalysis, 2020, 385, 44-51.	3.1	10
16	Green Synthesis of Thiuram Disulfides with CO ₂ as an Acid Agent for Sustainable Development. Industrial & Engineering Chemistry Research, 2018, 57, 16572-16578.	1.8	9
17	Continuous-flow synthesis of polymethylsilsesquioxane spheres in a microreaction system. Powder Technology, 2021, 390, 521-528.	2.1	9
18	Controllable preparation of thio-functionalized composite polysilsesquioxane microspheres in a microreaction system. Advanced Powder Technology, 2022, 33, 103578.	2.0	9

Jian Deng

#	Article	IF	CITATIONS
19	Continuous, homogeneous and rapid synthesis of 4-bromo-3-methylanisole in a modular microreaction system. Chinese Journal of Chemical Engineering, 2020, 28, 2092-2098.	1.7	8
20	Hydrodynamics and Scaling Laws of Gas–Liquid Taylor Flow in Viscous Liquids in a Microchannel. Industrial & Engineering Chemistry Research, 2022, 61, 10275-10284.	1.8	8
21	Continuous synthesis of tetraethyl thiuram disulfide with CO2 as acid agent in a gas-liquid microdispersion system. Journal of Flow Chemistry, 2019, 9, 211-220.	1.2	7
22	Preparation of 2,3-Epoxypropyl Neodecanoate: Process Optimization and Mechanism Discussion. Industrial & Engineering Chemistry Research, 2020, 59, 19168-19176.	1.8	7
23	Ideality analysis and general laws of bubble swarm microflow for large-scale gas–liquid microreaction processes. Chinese Journal of Chemical Engineering, 2022, 50, 56-65.	1.7	7
24	Mechanism and modeling of Taylor bubble generation in viscous liquids via the vertical squeezing route. Chemical Engineering Science, 2022, 258, 117763.	1.9	7
25	Remarkable improvement of epoxide ring-opening reaction efficiency and selectivity with water as a green regulator. Reaction Chemistry and Engineering, 2021, 6, 2159-2169.	1.9	6
26	Effect of Viscosity on Liquid–Liquid Slug Flow in a Step T-Junction Microchannel. Industrial & Engineering Chemistry Research, 2022, 61, 8333-8345.	1.8	6
27	Liquid-liquid colliding micro-dispersion and general scaling laws in novel T-junction microdevices. Chemical Engineering Science, 2022, 258, 117746.	1.9	6
28	A chemical looping technology for the synthesis of 2,2′-dibenzothiazole disulfide. Green Chemistry, 2020, 22, 2778-2785.	4.6	5
29	Quantitative determination of base-catalyzed hydrolysis kinetics of methyltrimethoxysilane by in-situ Raman spectroscopy. Chemical Engineering Journal, 2022, 446, 136889.	6.6	5
30	Dehydrochlorination of β-chlorohydrin in continuous microflow system: Reaction kinetics and process intensification. Chemical Engineering Journal, 2022, 444, 136498.	6.6	5
31	Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice. Chinese Journal of Chemical Engineering, 2022, 42, 210-218.	1.7	3
32	A Much Cleaner Oxidation Process for 2,2′-Dibenzothiazole Disulfide Synthesis Catalyzed by Phosphotungstic Acid. Industrial & Engineering Chemistry Research, 2022, 61, 207-214.	1.8	3
33	Fast deoxygenation in a miniaturized annular centrifugal device. Separation and Purification Technology, 2022, 297, 121546.	3.9	3
34	Reaction Pathway and Selectivity Control of Tetraethyl Thiuram Disulfide Synthesis with NaHCO ₃ as a pH Regulator. ACS Omega, 2020, 5, 23736-23742.	1.6	2
35	Main Reaction Network and Kinetics in the Synthesis of 2,2′-Dibenzothiazole Disulfide. Industrial & Engineering Chemistry Research, 2021, 60, 10094-10100.	1.8	1
36	Highly efficient twoâ€stage ringâ€opening of epichlorohydrin with carboxylic acid in a microreaction system. AICHE Journal, 2022, 68, .	1.8	1

Jian Deng

#	Article	IF	CITATIONS
37	Organocatalyzed Beckmann Rearrangement of Cyclohexanone Oxime by Trifluoroacetic Anhydride in Microreactors. Industrial & Engineering Chemistry Research, 0, , .	1.8	1
38	Continuous-flow synthesis of (E)-2-Hexenal intermediates using a two-stage microreactor system. Journal of Flow Chemistry, 2020, 10, 661-672.	1.2	0