Rita C Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814968/publications.pdf

Version: 2024-02-01

97 3,511 36
papers citations h-index

36 55
h-index g-index

97 97 all docs citations

97 times ranked 4615 citing authors

#	Article	IF	CITATIONS
1	Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 2016, 82, 9-22.	5.2	182
2	Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innovative Food Science and Emerging Technologies, 2016, 35, 139-148.	5.6	164
3	Phenolic compounds from olive mill wastes: Health effects, analytical approach and application as food antioxidants. Trends in Food Science and Technology, 2015, 45, 200-211.	15.1	127
4	Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Science of the Total Environment, 2018, 644, 229-236.	8.0	126
5	Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chemistry, 2013, 141, 4152-4160.	8.2	118
6	Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Industrial Crops and Products, 2014, 53, 350-357.	5.2	114
7	Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chemistry, 2018, 267, 28-35.	8.2	94
8	New Trends in Food Allergens Detection: Toward Biosensing Strategies. Critical Reviews in Food Science and Nutrition, 2016, 56, 2304-2319.	10.3	91
9	Acrylamide in espresso coffee: Influence of species, roast degree and brew length. Food Chemistry, 2010, 119, 929-934.	8.2	84
10	Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations, 2020, 7, 33.	2.4	82
11	Antiradical Activity, Phenolics Profile, and Hydroxymethylfurfural in Espresso Coffee: Influence of Technological Factors. Journal of Agricultural and Food Chemistry, 2010, 58, 12221-12229.	5.2	79
12	Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food and Chemical Toxicology, 2014, 67, 139-144.	3.6	76
13	Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT - Food Science and Technology, 2014, 55, 197-202.	5.2	76
14	Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosensors and Bioelectronics, 2015, 64, 19-24.	10.1	76
15	Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chemistry, 2018, 269, 264-275.	8.2	75
16	Macroalgae-Derived Ingredients for Cosmetic Industry—An Update. Cosmetics, 2018, 5, 2.	3.3	74
17	Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods?. Trends in Food Science and Technology, 2020, 98, 181-189.	15.1	72
18	Discrimination between arabica and robusta coffee species on the basis of their tocopherol profiles. Food Chemistry, 2009, 114, 295-299.	8.2	70

#	Article	IF	CITATIONS
19	Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics, 2018, 5, 5.	3.3	67
20	Nutritional composition, antioxidant activity and phenolic compounds of wild Taraxacum sect. Ruderalia. Food Research International, 2014, 56, 266-271.	6.2	60
21	Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample?. Food Chemistry, 2014, 156, 339-346.	8.2	55
22	Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods, 2020, 9, 1382.	4.3	55
23	Coffee by-products in topical formulations: A review. Trends in Food Science and Technology, 2021, 111, 280-291.	15.1	51
24	Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method. Journal of Agricultural and Food Chemistry, 2010, 58, 3002-3007.	5.2	48
25	Cardioprotective properties of grape seed proanthocyanidins: An update. Trends in Food Science and Technology, 2016, 57, 31-39.	15.1	48
26	Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Science of the Total Environment, 2019, 652, 40-47.	8.0	48
27	Total antioxidant capacity of plant infusions: Assessment using electrochemical DNA-based biosensor and spectrophotometric methods. Food Control, 2016, 68, 153-161.	5.5	47
28	Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach. Analytical and Bioanalytical Chemistry, 2015, 407, 7157-7163.	3.7	45
29	Angolan Cymbopogon citratus used for therapeutic benefits: Nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts. Food and Chemical Toxicology, 2013, 60, 413-418.	3.6	44
30	Coffea canephora silverskin from different geographical origins: A comparative study. Science of the Total Environment, 2018, 645, 1021-1028.	8.0	44
31	Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science and Technology, 2019, 93, 106-124.	15.1	43
32	Are coffee silverskin extracts safe for topical use? An in vitro and in vivo approach. Industrial Crops and Products, 2015, 63, 167-174.	5.2	42
33	State of the art in coffee processing by-products. , 2017, , 1-26.		42
34	Factors Influencing the Norharman and Harman Contents in Espresso Coffee. Journal of Agricultural and Food Chemistry, 2007, 55, 1832-1838.	5.2	41
35	Determination of Vitamin E in Coffee Beans by HPLC Using a Micro-extraction Method. Food Science and Technology International, 2009, 15, 57-63.	2.2	40
36	BenefÃcios do café na saúde: mito ou realidade?. Quimica Nova, 2009, 32, 2169-2180.	0.3	39

#	Article	IF	CITATIONS
37	Free and Conjugated Biogenic Amines in Green and Roasted Coffee Beans. Journal of Agricultural and Food Chemistry, 2004, 52, 6188-6192.	5.2	38
38	Vitamin E Profile as a Reliable Authenticity Discrimination Factor between Chestnut (Castanea sativa) Tj ETQq0	0 0 <u>rg</u> BT /0	Overlock 10 T
39	Development and Validation of a Matrix Solidâ€Phase Dispersion Method to Determine Acrylamide in Coffee and Coffee Substitutes. Journal of Food Science, 2010, 75, T57-63.	3.1	36
40	Teas, dietary supplements and fruit juices: A comparative study regarding antioxidant activity and bioactive compounds. LWT - Food Science and Technology, 2012, 49, 324-328.	5.2	36
41	Hardy kiwi leaves extracted by multi-frequency multimode modulated technology: A sustainable and promising by-product for industry. Food Research International, 2018, 112, 184-191.	6.2	35
42	Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed Porphyra dioica. Food Research International, 2020, 136, 109309.	6.2	35
43	Whole or Defatted Sesame Seeds (Sesamum indicum L.)? The Effect of Cold Pressing on Oil and Cake Quality. Foods, 2021, 10, 2108.	4.3	34
44	A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chemistry, 2020, 326, 126940.	8.2	32
45	Tocopherols in coffee brews: Influence of coffee species, roast degree and brewing procedure. Journal of Food Composition and Analysis, 2010, 23, 802-808.	3.9	28
46	Phenylketonuria: Protein content and amino acids profile of dishes for phenylketonuric patients. The relevance of phenylalanine. Food Chemistry, 2014, 149, 144-150.	8.2	26
47	Multi-frequency multimode modulated technology as a clean, fast, and sustainable process to recover antioxidants from a coffee by-product. Journal of Cleaner Production, 2017, 168, 14-21.	9.3	26
48	Portuguese Honeys from Different Geographical and Botanical Origins: A 4-Year Stability Study Regarding Quality Parameters and Antioxidant Activity. Molecules, 2017, 22, 1338.	3.8	25
49	Tocopherols in espresso coffee: Analytical method development and validation. Food Chemistry, 2009, 115, 1549-1555.	8.2	23
50	Lipid content and fatty acid profile of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles as affected by feed containing different amounts of plant protein sources. Food Chemistry, 2012, 134, 1337-1342.	8.2	23
51	Isoflavones in food supplements: chemical profile, label accordance and permeability study in Caco-2 cells. Food and Function, 2015, 6, 938-946.	4.6	23
52	Impact of boiling on phytochemicals and antioxidant activity of green vegetables consumed in the Mediterranean diet. Food and Function, 2015, 6, 1157-1163.	4.6	23
53	Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals, 2021, 14, 913.	3.8	23
54	Emerging drying techniques for food safety and quality: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1125-1160.	11.7	22

#	Article	IF	CITATIONS
55	Method development and validation for isoflavones quantification in coffee. Food Chemistry, 2010, 122, 914-919.	8.2	21
56	Caffeine-based food supplements and beverages: Trends of consumption for performance purposes and safety concerns. Food Research International, 2018, 109, 310-319.	6.2	20
57	Improving the extraction of Ara h 6 (a peanut allergen) from a chocolate-based matrix for immunosensing detection: Influence of time, temperature and additives. Food Chemistry, 2017, 218, 242-248.	8.2	18
58	Monoamines and cortisol as potential mediators of the relationship between exercise and depressive symptoms. European Archives of Psychiatry and Clinical Neuroscience, 2017, 267, 117-121.	3.2	17
59	Nutritional composition of low protein and phenylalanine-restricted dishes prepared for phenylketonuric patients. LWT - Food Science and Technology, 2014, 57, 283-289.	5.2	16
60	Norharman and harman in instant coffee and coffee substitutes. Food Chemistry, 2010, 120, 1238-1241.	8.2	15
61	How functional foods endure throughout the shelf storage? Effects of packing materials and formulation on the quality parameters and bioactivity of smoothies. LWT - Food Science and Technology, 2016, 65, 70-78.	5.2	15
62	Cherry stem infusions: antioxidant potential and phenolic profile by UHPLC-ESI-QTOF-MS. Food and Function, 2020, 11, 3471-3482.	4.6	15
63	Nutritional value and influence of the thermal processing on a traditional Portuguese fermented sausage (alheira). Meat Science, 2013, 93, 914-918.	5.5	14
64	Pre-meal tomato (<i>Lycopersicon esculentum</i>) intake can have anti-obesity effects in young women?. International Journal of Food Sciences and Nutrition, 2014, 65, 1019-1026.	2.8	14
65	Enzymatic Modification of Porphyra dioica-Derived Proteins to Improve their Antioxidant Potential. Molecules, 2020, 25, 2838.	3.8	14
66	Fourier transform near infrared spectroscopy as a tool to discriminate olive wastes: The case of monocultivar pomaces. Waste Management, 2020, 103, 378-387.	7.4	14
67	Monomeric and oligomeric flavan-3-ols and antioxidant activity of leaves from different Laurus sp Food and Function, 2015, 6, 1944-1949.	4.6	13
68	Comprehensive Phenolic and Free Amino Acid Analysis of Rosemary Infusions: Influence on the Antioxidant Potential. Antioxidants, 2021, 10, 500.	5.1	13
69	Factors Affecting Acrylamide Levels in Coffee Beverages. , 2015, , 217-224.		12
70	Phenolic profiles of eight olive cultivars from Algeria: effect ofBactrocera oleaeattack. Food and Function, 2018, 9, 890-897.	4.6	12
71	Neuroprotective properties of coffee: An update. Trends in Food Science and Technology, 2021, 113, 167-179.	15.1	12
72	Comprehensive characterisation of marine macroalgae waste and impact of oil extraction, focusing on the biomass recovery potential. Algal Research, 2021, 58, 102416.	4.6	10

#	Article	IF	CITATIONS
73	Herbal products containing Hibiscus sabdariffa L., Crataegus spp., and Panax spp.: Labeling and safety concerns. Food Research International, 2017, 100, 529-540.	6.2	9
74	Effect of Bactrocera oleae on phenolic compounds and antioxidant and antibacterial activities of two Algerian olive cultivars. Food and Function, 2016, 7, 4372-4378.	4.6	8
75	Composition of fatty acids, tocopherols, tocotrienols and \hat{l}^2 -carotene content in oils of seeds of Brazilian Sapindaceae and Meliaceae species. Journal of Food Science and Technology, 2019, 56, 3164-3169.	2.8	8
76	Improving bioactive compounds extractability of Amorphophallus paeoniifolius (Dennst.) Nicolson. Industrial Crops and Products, 2016, 79, 180-187.	5.2	7
77	Exploring Gunnera tinctoria: From Nutritional and Anti-Tumoral Properties to Phytosome Development Following Structural Arrangement Based on Molecular Docking. Molecules, 2021, 26, 5935.	3.8	6
78	Influence of Olive Pomace Blending on Antioxidant Activity: Additive, Synergistic, and Antagonistic Effects. Molecules, 2021, 26, 169.	3.8	6
79	Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods, 2022, 11, 1671.	4.3	6
80	New approach for vitamin E extraction in rainbow trout flesh: Application in fish fed commercial and red seaweedâ€supplemented diets. European Journal of Lipid Science and Technology, 2015, 117, 1398-1405.	1.5	5
81	Near Infrared (NIR) Spectroscopy as a Tool to Assess Blends Composition and Discriminate Antioxidant Activity of Olive Pomace Cultivars. Waste and Biomass Valorization, 2021, 12, 4901-4913.	3.4	4
82	Targeting specific nutrient deficiencies in protein-restricted diets: some practical facts in PKU dietary management. Food and Function, 2014, 5, 3151-3159.	4.6	3
83	Enzyme-Assisted Release of Antioxidant Peptides from Porphyra dioica Conchocelis. Antioxidants, 2021, 10, 249.	5.1	3
84	Morphological and Chemical Differentiation between Tunisian Populations of <i>Pinus halepensis</i> , <i>Pinus brutia</i> , and <i>Pinus pinaster</i> . Chemistry and Biodiversity, 2021, 18, e2100071.	2.1	3
85	Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling. Pharmaceutics, 2022, 14, 112.	4.5	3
86	Acrylamide in Coffee. , 2015, , 575-582.		2
87	Fruit byproducts as alternative ingredients for bakery products. , 2021, , 111-131.		2
88	Infusion of aerial parts of Salvia chudaei Batt. & Department of Salvia chudaei Batt. & Samp; Trab. from Algeria: Chemical, toxicological and bioactivities characterization. Journal of Ethnopharmacology, 2021, 280, 114455.	4.1	2
89	Applications of recovered bioactive compounds in cosmetics and other products. , 2017, , 195-220.		1
90	Oilseeds from a Brazilian Semi-Arid Region: Edible Potential Regarding the Mineral Composition. Foods, 2020, 9, 229.	4.3	1

#	Article	IF	Citations
91	Cucumis melo L. seed oil components and biological activities. , 2022, , 125-138.		1
92	Antimicrobial multi-component lipid-based nanoemulsion of <i>Eucalyptus globulus</i> and <i>Mentha piperita</i> as natural preservative. Journal of Dispersion Science and Technology, 2023, 44, 1423-1432.	2.4	1
93	CHAPTER 22. Isoflavones in Beverages. Food and Nutritional Components in Focus, 2012, , 365-380.	0.1	O
94	Assay of Total Antioxidant Capacity of Coffee. , 2015, , 963-970.		0
95	Isoflavones in Coffee. , 2015, , 143-148.		O
96	Rotulagem do café e certificações de sustentabilidade Significado e importância para a sociedade. Cadernos De Ciência & Tecnologia, 2021, 38, 26761.	0.0	0
97	Influence of Coffee Silverskin, Caffeine and 5-Caffeoylquinic Acid on Sugar Uptake Using Caco-2 Cells: A Preliminary Study. , 0, , .		0