List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814934/publications.pdf Version: 2024-02-01

LALIDA TOFIL

#	Article	IF	CITATIONS
1	Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 2018, 36, 452-466.	11.7	885
2	Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions. Environmental Science & Technology, 2015, 49, 12585-12593.	10.0	287
3	Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology, 2017, 225, 429-437.	9.6	249
4	Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels, 2016, 9, 26.	6.2	248
5	Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times. Water Research, 2017, 118, 261-271.	11.3	136
6	New insights from the biogas microbiome by comprehensive genome-resolved metagenomics of nearly 1600 species originating from multiple anaerobic digesters. Biotechnology for Biofuels, 2020, 13, 25.	6.2	136
7	Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics. Bioresource Technology, 2018, 247, 616-623.	9.6	133
8	Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes. Bioresource Technology, 2016, 216, 260-266.	9.6	132
9	Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Applied Energy, 2017, 185, 126-135.	10.1	132
10	Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Research, 2018, 140, 123-134.	11.3	122
11	Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresource Technology, 2017, 234, 310-319.	9.6	110
12	Microbial diversity and dynamicity of biogas reactors due to radical changes of feedstock composition. Bioresource Technology, 2015, 176, 56-64.	9.6	101
13	Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem. Microbiome, 2020, 8, 22.	11.1	91
14	Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: Focusing on microbial community dynamics. Bioresource Technology, 2019, 286, 121376.	9.6	89
15	Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading. Science of the Total Environment, 2019, 655, 529-538.	8.0	85
16	Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Research, 2019, 151, 271-279.	11.3	83
17	Untangling the Effect of Fatty Acid Addition at Species Level Revealed Different Transcriptional Responses of the Biogas Microbial Community Members. Environmental Science & Technology, 2016, 50, 6079-6090.	10.0	79
18	Genome-Centric Metatranscriptomics Analysis Reveals the Role of Hydrochar in Anaerobic Digestion of Waste Activated Sludge. Environmental Science & Samp; Technology, 2021, 55, 8351-8361.	10.0	77

#	Article	IF	CITATIONS
19	Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chemical Engineering Journal, 2020, 401, 126159.	12.7	76
20	Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics. Applied and Environmental Microbiology, 2018, 84, .	3.1	72
21	Hybrid biogas upgrading in a two-stage thermophilic reactor. Energy Conversion and Management, 2018, 168, 1-10.	9.2	71
22	Taxonomy of anaerobic digestion microbiome reveals biases associated with the applied high throughput sequencing strategies. Scientific Reports, 2018, 8, 1926.	3.3	70
23	New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances. Biotechnology for Biofuels, 2015, 8, 3.	6.2	68
24	Hydrogen-Fueled Microbial Pathways in Biogas Upgrading Systems Revealed by Genome-Centric Metagenomics. Frontiers in Microbiology, 2018, 9, 1079.	3.5	66
25	Hydrogenotrophic methanogens are the key for a successful bioaugmentation to alleviate ammonia inhibition in thermophilic anaerobic digesters. Bioresource Technology, 2019, 293, 122070.	9.6	66
26	Bioaugmentation strategy for overcoming ammonia inhibition during biomethanation of a protein-rich substrate. Chemosphere, 2019, 231, 415-422.	8.2	66
27	Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass. Bioelectrochemistry, 2018, 123, 145-149.	4.6	65
28	A novel archaeal species belonging to Methanoculleus genus identified via de-novo assembly and metagenomic binning process in biogas reactors. Anaerobe, 2017, 46, 23-32.	2.1	63
29	Temperatureâ€dependent global gene expression in the Antarctic archaeon <i>Methanococcoides burtonii</i> . Environmental Microbiology, 2011, 13, 2018-2038.	3.8	62
30	Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation. Bioresource Technology, 2019, 291, 121817.	9.6	62
31	The impact of genomic variability on gene expression in environmental <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> strains. Environmental Microbiology, 2014, 16, 1378-1397.	3.8	59
32	Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresource Technology, 2019, 275, 375-385.	9.6	59
33	Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors. Scientific Reports, 2016, 6, 28810.	3.3	58
34	Insights into Ammonia Adaptation and Methanogenic Precursor Oxidation by Genome-Centric Analysis. Environmental Science & Technology, 2020, 54, 12568-12582.	10.0	57
35	Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. Water Research, 2018, 134, 181-191.	11.3	56
36	Enriched ammonia-tolerant methanogenic cultures as bioaugmentation inocula in continuous biomethanation processes. Journal of Cleaner Production, 2017, 166, 1305-1313.	9.3	53

#	Article	IF	CITATIONS
37	Microbial community changes in methanogenic granules during the transition from mesophilic to thermophilic conditions. Applied Microbiology and Biotechnology, 2017, 101, 1313-1322.	3.6	51
38	Genomic Comparison of Lactobacillus helveticus Strains Highlights Probiotic Potential. Frontiers in Microbiology, 2019, 10, 1380.	3.5	50
39	Revealing metabolic mechanisms of interaction in the anaerobic digestion microbiome by flux balance analysis. Metabolic Engineering, 2020, 62, 138-149.	7.0	45
40	Different mechanisms of resistance modulate sulfite tolerance in wine yeasts. Applied Microbiology and Biotechnology, 2016, 100, 797-813.	3.6	42
41	Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms. Water Research, 2017, 126, 19-28.	11.3	41
42	Comparative Transcriptomic Analysis of Streptococcus thermophilus TH1436 and TH1477 Showing Different Capability in the Use of Galactose. Frontiers in Microbiology, 2018, 9, 1765.	3.5	40
43	Exoelectrogenic Anaerobic Granular Sludge for Simultaneous Electricity Generation and Wastewater Treatment. Environmental Science & Technology, 2019, 53, 12130-12140.	10.0	40
44	Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics. Microbiome, 2018, 6, 194.	11.1	39
45	Pilot-scale biomethanation in a trickle bed reactor: Process performance and microbiome functional reconstruction. Energy Conversion and Management, 2021, 244, 114491.	9.2	39
46	Oxidative stress response and nitrogen utilization are strongly variable in Saccharomyces cerevisiae wine strains with different fermentation performances. Applied Microbiology and Biotechnology, 2014, 98, 4119-4135.	3.6	38
47	Microbial analysis in biogas reactors suffering by foaming incidents. Bioresource Technology, 2014, 167, 24-32.	9.6	38
48	Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates. BMC Evolutionary Biology, 2008, 8, 313.	3.2	37
49	Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure. Applied Microbiology and Biotechnology, 2014, 98, 6015-6037.	3.6	35
50	Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products. Food Microbiology, 2017, 63, 47-57.	4.2	34
51	16s rRNA gene sequencing and radioisotopic analysis reveal the composition of ammonia acclimatized methanogenic consortia. Bioresource Technology, 2019, 272, 54-62.	9.6	32
52	Converting mesophilic upflow sludge blanket (UASB) reactors to thermophilic by applying axenic methanogenic culture bioaugmentation. Chemical Engineering Journal, 2018, 332, 508-516.	12.7	30
53	Whole-Genome Sequences of Streptococcus thermophilus Strains TH1435 and TH1436, Isolated from Raw Goat Milk. Genome Announcements, 2014, 2, .	0.8	28
54	Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion. Applied Energy, 2020, 263, 114646.	10.1	28

#	Article	IF	CITATIONS
55	Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Scientific Reports, 2018, 8, 6845.	3.3	26
56	A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496. Viruses, 2019, 11, 7.	3.3	26
57	Human waste anaerobic digestion as a promising low-carbon strategy: Operating performance, microbial dynamics and environmental footprint. Journal of Cleaner Production, 2020, 256, 120414.	9.3	26
58	Comprehensive evaluation of different strategies to recover methanogenic performance in ammonia-stressed reactors. Bioresource Technology, 2021, 336, 125329.	9.6	25
59	Microbiota of the Therapeutic Euganean Thermal Muds with a Focus on the Main Cyanobacteria Species. Microorganisms, 2020, 8, 1590.	3.6	23
60	Evaluation of acidogenesis products' effect on biogas production performed with metagenomics and isotopic approaches. Biotechnology for Biofuels, 2021, 14, 125.	6.2	23
61	In-situ biogas upgrading assisted by bioaugmentation with hydrogenotrophic methanogens during mesophilic and thermophilic co-digestion. Bioresource Technology, 2022, 348, 126754.	9.6	22
62	Co-digestion of cheese whey with sewage sludge for caproic acid production: Role of microbiome and polyhydroxyalkanoates potential production. Bioresource Technology, 2021, 337, 125388.	9.6	19
63	Genome Sequences of Four Italian Streptococcus thermophilus Strains of Dairy Origin. Genome Announcements, 2014, 2, .	0.8	18
64	Potential use of <i>scotta</i> , the by-product of the ricotta cheese manufacturing process, for the production of fermented drinks. Journal of Dairy Research, 2016, 83, 104-108.	1.4	18
65	Short communication: Comparison of growth kinetics at different temperatures of Streptococcus macedonicus and Streptococcus thermophilus strains of dairy origin. Journal of Dairy Science, 2018, 101, 7812-7816.	3.4	18
66	New insights into the variability of lactic acid production in Lachancea thermotolerans at the phenotypic and genomic level. Microbiological Research, 2020, 238, 126525.	5.3	18
67	Genome Sequences of Streptococcus thermophilus Strains MTH17CL396 and M17PTZA496 from Fontina, an Italian PDO Cheese. Genome Announcements, 2014, 2, .	0.8	17
68	Draft Genome Sequence of the Yeast <i>Starmerella bacillaris</i> (syn., <i>Candida</i>) Tj ETQq0 0 0 rgBT /Ove Announcements, 2017, 5, .	rlock 10 T 0.8	f 50 227 Td (17
69	Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy. Current Microbiology, 2018, 75, 1334-1344.	2.2	17
70	Microbial dynamics in biogas digesters treating lipid-rich substrates via genome-centric metagenomics. Science of the Total Environment, 2021, 778, 146296.	8.0	17
71	Co-fermentation of onion and whey: A promising synbiotic combination. Journal of Functional Foods, 2017, 39, 233-237.	3.4	16
72	Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics, 2014, 15, 1045.	2.8	15

#	Article	lF	CITATIONS
73	Whole-Genome Sequence of <i>Starmerella bacillaris</i> PAS13, a Nonconventional Enological Yeast with Antifungal Activity. Genome Announcements, 2017, 5, .	0.8	15
74	Whole genome comparison of two Starmerella bacillaris strains with other wine yeasts uncovers genes involved in modulating important winemaking traits. FEMS Yeast Research, 2018, 18, .	2.3	15
75	Characterization of the planktonic microbiome in upflow anaerobic sludge blanket reactors during adaptation of mesophilic methanogenic granules to thermophilic operational conditions. Anaerobe, 2017, 46, 69-77.	2.1	14
76	The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations. FEMS Yeast Research, 2020, 20, .	2.3	13
77	Thermophilic anaerobic digestion of olive mill wastewater in an upflow packed bed reactor: Evaluation of 16S rRNA amplicon sequencing for microbial analysis. Journal of Environmental Management, 2022, 301, 113853.	7.8	13
78	Preliminary investigation of microorganisms potentially involved in microplastics degradation using an integrated metagenomic and biochemical approach. Science of the Total Environment, 2022, 843, 157017.	8.0	13
79	In vitro fermentation of key dietary compounds with rumen fluid: A genome-centric perspective. Science of the Total Environment, 2017, 584-585, 683-691.	8.0	12
80	Effect of different initial pH on the growth of Streptococcus macedonicus and Streptococcus thermophilus strains. International Dairy Journal, 2018, 86, 65-68.	3.0	12
81	Evolution of the microbial community structure in biogas reactors inoculated with seeds from different origin. Science of the Total Environment, 2021, 773, 144981.	8.0	12
82	Long-term preserved and rapidly revived methanogenic cultures: Microbial dynamics and preservation mechanisms. Journal of Cleaner Production, 2020, 263, 121577.	9.3	11
83	Valorization of palm oil mill wastewater for integrated production of microbial oil and biogas in a biorefinery approach. Journal of Cleaner Production, 2021, 296, 126606.	9.3	11
84	KEMET – A python tool for KEGG Module evaluation and microbial genome annotation expansion. Computational and Structural Biotechnology Journal, 2022, 20, 1481-1486.	4.1	11
85	Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiology, 2021, 97, 103753.	4.2	10
86	Metabolomic Alterations Do Not Induce Metabolic Burden in the Industrial Yeast M2n[pBKD2-Pccbgl1]-C1 Engineered by Multiple δ-Integration of a Fungal β-Glucosidase Gene. Frontiers in Bioengineering and Biotechnology, 2019, 7, 376.	4.1	9
87	Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: the Design of an Amylolytic Consolidated Bioprocessing Yeast. Frontiers in Microbiology, 2021, 12, 768562.	3.5	9
88	Whole-Genome Sequence of Streptococcus macedonicus Strain 33MO, Isolated from the Curd of Morlacco Cheese in the Veneto Region (Italy). Genome Announcements, 2014, 2, .	0.8	8
89	Whole-Genome Sequences of Three Streptococcus macedonicus Strains Isolated from Italian Cheeses in the Veneto Region. Genome Announcements, 2017, 5, .	0.8	8
90	Evolutionary Study of the Crassphage Virus at Gene Level. Viruses, 2020, 12, 1035.	3.3	8

#	Article	IF	CITATIONS
91	Draft genome sequence data of Lactobacillus paracasei strain DTA83 isolated from infant stools. Data in Brief, 2019, 22, 1064-1067.	1.0	7
92	Metagenomic insights into bioaugmentation and biovalorization of oily industrial wastes by lipolytic oleaginous yeast <i>Yarrowia lipolytica</i> during successive batch fermentation. Biotechnology and Applied Biochemistry, 2020, 67, 1020-1029.	3.1	7
93	Study of microbial dynamics during optimization of hydrogen production from food waste by using LCFA-rich agent. Bioresource Technology Reports, 2019, 5, 157-163.	2.7	6
94	Enhancing anaerobic digestion of agricultural residues by microaerobic conditions. Biomass Conversion and Biorefinery, 2019, , 1.	4.6	6
95	The RNA polymerase subunits E/F from the Antarctic archaeon <i>Methanococcoides burtonii</i> bind to specific species of mRNA. Environmental Microbiology, 2011, 13, 2039-2055.	3.8	4
96	Genome Sequence of Lactobacillus fabifermentans Strain T30PCM01, Isolated from Fermenting Grape Marc. Genome Announcements, 2014, 2, .	0.8	4
97	Draft Genome Sequences of Three Virulent Streptococcus thermophilus Bacteriophages Isolated from the Dairy Environment in the Veneto Region of Italy. Genome Announcements, 2018, 6, .	0.8	4
98	Milk microbial composition of Brazilian dairy cows entering the dry period and genomic comparison between Staphylococcus aureus strains susceptible to the bacteriophage vB_SauM-UFV_DC4. Scientific Reports, 2020, 10, 5520.	3.3	4
99	Characterization of bacterial communities isolated from municipal waste compost and screening of their plant-interactive phenotypes. Science of the Total Environment, 2022, 806, 150592.	8.0	4
100	The Complete Genome Sequence of Trueperella pyogenes UFV1 Reveals a Processing System Involved in the Quorum-Sensing Signal Response. Genome Announcements, 2017, 5, .	0.8	3
101	Genome Sequence of Enterococcus mundtii EM01, Isolated from Bombyx mori Midgut and Responsible for Flacherie Disease in Silkworms Reared on an Artificial Diet. Genome Announcements, 2018, 6, .	0.8	3
102	Complete genome sequence of Nitratireductor sp. strain OM-1: A lipid-producing bacterium with potential use in wastewater treatment. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00366.	4.4	3
103	Genome Sequence of <i>Rhizobium sullae</i> HCNT1 Isolated from <i>Hedysarum coronarium</i> Nodules and Featuring Peculiar Denitrification Phenotypes. Genome Announcements, 2018, 6, .	0.8	2
104	The hidden layers of microbial community structure: extracting the concealed diversity dimensions from our sequencing data. FEMS Microbiology Letters, 2020, 367, .	1.8	1