Henry S White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-Dimensional Battery Architectures. Chemical Reviews, 2004, 104, 4463-4492.	47.7	1,146
2	Selective increase in CO ₂ electroreduction activity at grain-boundary surface terminations. Science, 2017, 358, 1187-1192.	12.6	596
3	Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. Journal of the American Chemical Society, 1984, 106, 5375-5377.	13.7	514
4	Chemical derivatization of microelectrode arrays by oxidation of pyrrole and N-methylpyrrole: fabrication of molecule-based electronic devices. Journal of the American Chemical Society, 1984, 106, 7389-7396.	13.7	371
5	Ion Current Rectification at Nanopores in Glass Membranes. Langmuir, 2008, 24, 2212-2218.	3.5	366
6	Polymer films on electrodes. 8. Investigation of charge-transport mechanisms in Nafion polymer modified electrodes. Journal of the American Chemical Society, 1982, 104, 4811-4817.	13.7	338
7	Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the Ru(2,21 - bpy)32+-S2O82- system in acetonitrile-water solutions. Journal of the American Chemical Society, 1982, 104, 6891-6895.	13.7	324
8	Theory of the interfacial potential distribution and reversible voltammetric response of electrodes coated with electroactive molecular films. Analytical Chemistry, 1992, 64, 2398-2405.	6.5	310
9	A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 2019, 10, 6404-6422.	7.4	255
10	Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2019, 141, 6392-6402.	13.7	251
11	Bench-Top Method for Fabricating Glass-Sealed Nanodisk Electrodes, Glass Nanopore Electrodes, and Glass Nanopore Membranes of Controlled Size. Analytical Chemistry, 2007, 79, 4778-4787.	6.5	250
12	Single Ion-Channel Recordings Using Glass Nanopore Membranes. Journal of the American Chemical Society, 2007, 129, 11766-11775.	13.7	238
13	The Nanopore Electrode. Analytical Chemistry, 2004, 76, 6229-6238.	6.5	213
14	Electrochemistry of Sulfur Adlayers on the Low-Index Faces of Silver. The Journal of Physical Chemistry, 1996, 100, 9854-9859.	2.9	209
15	Nanoparticle Transport in Conical-Shaped Nanopores. Analytical Chemistry, 2011, 83, 3840-3847.	6.5	209
16	Pressure-Dependent Ion Current Rectification in Conical-Shaped Glass Nanopores. Journal of the American Chemical Society, 2011, 133, 13300-13303.	13.7	202
17	Pitting Corrosion of Titanium. Journal of the Electrochemical Society, 1994, 141, 636-642.	2.9	189
18	Observation of Multipeak Collision Behavior during the Electro-Oxidation of Single Ag Nanoparticles. Journal of the American Chemical Society, 2017, 139, 708-718.	13.7	181

#	Article	IF	CITATIONS
19	Electrostatic-Gated Transport in Chemically Modified Glass Nanopore Electrodes. Journal of the American Chemical Society, 2006, 128, 7679-7686.	13.7	180
20	Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions. Analytical Chemistry, 2003, 75, 3962-3971.	6.5	178
21	Photon Gated Transport at the Glass Nanopore Electrode. Journal of the American Chemical Society, 2006, 128, 13553-13558.	13.7	172
22	Electrochemically Generated Magnetic Forces. Enhanced Transport of a Paramagnetic Redox Species in Large, Nonuniform Magnetic Fields. Journal of the American Chemical Society, 1998, 120, 13461-13468.	13.7	170
23	Electrogeneration of Single Nanobubbles at Sub-50-nm-Radius Platinum Nanodisk Electrodes. Langmuir, 2013, 29, 11169-11175.	3.5	164
24	3-D Microbatteries. Electrochemistry Communications, 2003, 5, 120-123.	4.7	163
25	Theory of the voltammetric response of electrodes of submicron dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte. Analytical Chemistry, 1993, 65, 3343-3353.	6.5	162
26	A New Family of Multiferrocene Complexes with Enhanced Control of Structure and Stoichiometry via Coordination-Driven Self-Assembly and Their Electrochemistry. Journal of the American Chemical Society, 2008, 130, 839-841.	13.7	160
27	Electrochemical Measurements of Single H ₂ Nanobubble Nucleation and Stability at Pt Nanoelectrodes. Journal of Physical Chemistry Letters, 2014, 5, 3539-3544.	4.6	157
28	Voltammetry of molecular films containing acid/base groups. Langmuir, 1993, 9, 1-3.	3.5	154
29	Fabrication inside Microchannels Using Fluid Flow. Accounts of Chemical Research, 2000, 33, 841-847.	15.6	151
30	Electrochemical Characterization of Electrodes with Submicrometer Dimensions. Analytical Chemistry, 2000, 72, 4441-4446.	6.5	148
31	Nanoreactors: Small Spaces, Big Implications in Chemistry. Journal of the American Chemical Society, 2016, 138, 7443-7445.	13.7	142
32	lontophoretic transport through porous membranes using scanning electrochemical microscopy: application to in vitro studies of ion fluxes through skin. Analytical Chemistry, 1993, 65, 1537-1545.	6.5	139
33	Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: breakdown of transport equations at very small electrodes. The Journal of Physical Chemistry, 1987, 91, 3559-3564.	2.9	138
34	Voltage-Rectified Current and Fluid Flow in Conical Nanopores. Accounts of Chemical Research, 2016, 49, 2605-2613.	15.6	136
35	A nonlocal freeâ€energy densityâ€functional approximation for the electrical double layer. Journal of Chemical Physics, 1990, 92, 5087-5098.	3.0	133
36	Electrophoretic Capture and Detection of Nanoparticles at the Opening of a Membrane Pore Using Scanning Electrochemical Microscopy. Analytical Chemistry, 2004, 76, 6108-6115.	6.5	132

#	Article	IF	CITATIONS
37	Resistive-Pulse Analysis of Nanoparticles. Annual Review of Analytical Chemistry, 2014, 7, 513-535.	5.4	132
38	Scanning Electrochemical Microscopy of Precursor Sites for Pitting Corrosion on Titanium. Journal of the Electrochemical Society, 1993, 140, L142-L145.	2.9	129
39	Critical Nuclei Size, Rate, and Activation Energy of H ₂ Gas Nucleation. Journal of the American Chemical Society, 2018, 140, 4047-4053.	13.7	122
40	Electrochemical Measurement of the Free Energy of Adsorption ofn-Alkanethiolates at Ag(111). Journal of the American Chemical Society, 1998, 120, 1062-1069.	13.7	118
41	A microelectrochemical diode with submicron contact spacing based on the connection of two microelectrodes using dissimilar redox polymers. Journal of the American Chemical Society, 1985, 107, 7373-7380.	13.7	116
42	Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores. Journal of Physical Chemistry C, 2014, 118, 2726-2734.	3.1	114
43	Scanning Electrochemical Microscopy Detection of Dissolved Sulfur Species from Inclusions in Stainless Steel. Journal of the Electrochemical Society, 2000, 147, 4120.	2.9	113
44	Electrochemical Nucleation of Stable N ₂ Nanobubbles at Pt Nanoelectrodes. Journal of the American Chemical Society, 2015, 137, 12064-12069.	13.7	113
45	Imaging Molecular Transport in Porous Membranes. Observation and Analysis of Electroosmotic Flow in Individual Pores Using the Scanning Electrochemical Microscope. Analytical Chemistry, 1998, 70, 1047-1058.	6.5	112
46	Impedance Analysis of Poly(vinylferrocene) Films: The Dependence of Diffusional Charge Transport and Exchange Current Density on Polymer Oxidation State. Journal of the Electrochemical Society, 1987, 134, 2198-2204.	2.9	109
47	Strong Effects of Cluster Size and Air Exposure on Oxygen Reduction and Carbon Oxidation Electrocatalysis by Size-Selected Pt _{<i>n</i>} (<i>n</i> 剤1) on Glassy Carbon Electrodes. Journal of the American Chemical Society, 2013, 135, 3073-3086.	13.7	109
48	Voltammetric Measurement of Interfacial Acid/Base Reactions. Journal of Physical Chemistry B, 1998, 102, 2930-2934.	2.6	108
49	Observation of Redox-Induced Electron Transfer and Spin Crossover for Dinuclear Cobalt and Iron Complexes with the 2,5-Di- <i>tert</i> -butyl-3,6-dihydroxy-1,4-benzoquinonate Bridging Ligand. Journal of the American Chemical Society, 2009, 131, 6229-6236.	13.7	106
50	Construction of Multifunctional Cuboctahedra via Coordination-Driven Self-Assembly. Journal of the American Chemical Society, 2009, 131, 6695-6697.	13.7	104
51	Stabilization of Metalâ€Metal Oxide Surfaces Using Electroactive Polymer Films. Journal of the Electrochemical Society, 1989, 136, 2152-2158.	2.9	100
52	Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 32385-32391.	8.0	99
53	Steady-State Voltammetric Response of the Nanopore Electrode. Analytical Chemistry, 2006, 78, 477-483.	6.5	98
54	Collision Dynamics during the Electrooxidation of Individual Silver Nanoparticles. Journal of the American Chemical Society, 2017, 139, 16923-16931.	13.7	95

#	Article	IF	CITATIONS
55	lonic Conductivity of the Aqueous Layer Separating a Lipid Bilayer Membrane and a Glass Support. Langmuir, 2006, 22, 10777-10783.	3.5	94
56	Post-Self-Assembly Covalent Chemistry of Discrete Multicomponent Metallosupramolecular Hexagonal Prisms. Journal of the American Chemical Society, 2011, 133, 10752-10755.	13.7	93
57	Crown ether–electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11504-11509.	7.1	93
58	Xâ€ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: Correlation of photoelectrochemical and capacitanceâ€potential behavior with surface chemical composition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 910-915.	2.1	92
59	Magnetic Field Effects in Electrochemistry. Voltammetric Reduction of Acetophenone at Microdisk Electrodes. The Journal of Physical Chemistry, 1996, 100, 5913-5922.	2.9	92
60	Chemically Modified Opals as Thin Permselective Nanoporous Membranes. Journal of the American Chemical Society, 2005, 127, 7268-7269.	13.7	92
61	Controlling the Translocation of Single-Stranded DNA through α-Hemolysin Ion Channels Using Viscosity. Langmuir, 2009, 25, 1233-1237.	3.5	91
62	Nanopore Detection of 8-Oxo-7,8-dihydro-2′-deoxyguanosine in Immobilized Single-Stranded DNA via Adduct Formation to the DNA Damage Site. Journal of the American Chemical Society, 2010, 132, 17992-17995.	13.7	91
63	Pressure-Driven Nanoparticle Transport across Glass Membranes Containing a Conical-Shaped Nanopore. Journal of Physical Chemistry C, 2011, 115, 18445-18452.	3.1	90
64	Pitting Corrosion of Titanium The Relationship Between Pitting Potential and Competitive Anion Adsorption at the Oxide Film/Electrolyte Interface. Journal of the Electrochemical Society, 2000, 147, 1376.	2.9	89
65	Semiconductor Electrodes: XXIX . High Efficiency Photoelectrochemical Solar Cells with Electrodes in an Aqueous Iodide Medium. Journal of the Electrochemical Society, 1980, 127, 518-520.	2.9	87
66	Transport of ionic species in skin: contribution of pores to the overall skin conductance. Pharmaceutical Research, 1993, 10, 1699-1709.	3.5	87
67	Monitoring the Escape of DNA from a Nanopore Using an Alternating Current Signal. Journal of the American Chemical Society, 2010, 132, 1878-1885.	13.7	86
68	Controlling Nanoparticle Dynamics in Conical Nanopores. Journal of Physical Chemistry C, 2013, 117, 703-711.	3.1	86
69	Semiconductor electrodes. 31. Photoelectrochemistry and photovoltaic systems with n- and p-type tungsten selenide (WSe2) in aqueous solution. Journal of the American Chemical Society, 1980, 102, 5142-5148.	13.7	83
70	Scanning Electrochemical Microscopy:Â Measurement of the Current Density at Microscopic Redox-Active Sites on Titanium. Journal of Physical Chemistry B, 1998, 102, 9812-9819.	2.6	82
71	Simulations of solvent effects on confined electrolytes. Journal of Chemical Physics, 1993, 98, 5793-5799.	3.0	79
72	Voltammetric measurement of bimolecular electron-transfer rates in low ionic strength solutions. Analytical Chemistry, 1991, 63, 1909-1914.	6.5	78

#	Article	IF	CITATIONS
73	Electrically Facilitated Molecular Transport. Analysis of the Relative Contributions of Diffusion, Migration, and Electroosmosis to Solute Transport in an Ion-Exchange Membrane. Analytical Chemistry, 2000, 72, 433-442.	6.5	77
74	The Role of the Electrical Double Layer and Ion Pairing on the Electrochemical Oxidation of Hexachloroiridate(III) at Pt Electrodes of Nanometer Dimensions. Langmuir, 2004, 20, 5474-5483.	3.5	77
75	Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode. Langmuir, 2015, 31, 4573-4581.	3.5	77
76	Chemically-Selective and Spatially-Localized Redox Activity at Ta/Ta2O5Electrodes. Langmuir, 1999, 15, 819-825.	3.5	75
77	A Random Walk through Electron-Transfer Kinetics. Analytical Chemistry, 2005, 77, 214 A-220 A.	6.5	74
78	Unzipping Kinetics of Duplex DNA Containing Oxidized Lesions in an α-Hemolysin Nanopore. Journal of the American Chemical Society, 2012, 134, 11006-11011.	13.7	74
79	Electrochemical Oxidative Adsorption of Ethanethiolate on Ag(111). Journal of the American Chemical Society, 1997, 119, 6596-6606.	13.7	73
80	Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions. Faraday Discussions, 2016, 193, 223-240.	3.2	73
81	Electrochemical Generation of Individual O ₂ Nanobubbles via H ₂ O ₂ Oxidation. Journal of Physical Chemistry Letters, 2017, 8, 2450-2454.	4.6	73
82	Nanopore Detection of 8-Oxoguanine in the Human Telomere Repeat Sequence. ACS Nano, 2015, 9, 4296-4307.	14.6	71
83	Scanning electrochemical microscopy of a porous membrane. Journal of Membrane Science, 1991, 58, 71-87.	8.2	70
84	Scanning Electrochemical Microscopy of Metal/Metal Oxide Electrodes. Analysis of Spatially Localized Electron-Transfer Reactions during Oxide Growth. Analytical Chemistry, 1999, 71, 3166-3170.	6.5	70
85	Single Nanochannel Platform for Detecting Chiral Drugs. Analytical Chemistry, 2017, 89, 1110-1116.	6.5	70
86	Oxidative Adsorption ofn-Alkanethiolates at Mercury. Dependence of Adsorption Free Energy on Chain Length. Journal of Physical Chemistry B, 1998, 102, 1235-1240.	2.6	69
87	Magnetic Field-Controlled Microfluidic Transport. Journal of the American Chemical Society, 2002, 124, 462-467.	13.7	69
88	Natural Convection at Microelectrodes. Analytical Chemistry, 1995, 67, 1541-1545.	6.5	68
89	Cluster Size Controls Branching between Water and Hydrogen Peroxide Production in Electrochemical Oxygen Reduction at Pt _{<i>n</i>} /ITO. Journal of Physical Chemistry C, 2015, 119, 11160-11170.	3.1	68
90	Magnetic field induced reversed (Negative) magnetization for electrochemically deposited Tc = 260 K Oxidized Films of Chromium Cyanide Magnets. Advanced Materials, 1997, 9, 645-647.	21.0	67

#	Article	IF	CITATIONS
91	Semiconductor Electrodes: XLI . Improvement of Performance of Electrodes by Electrochemical Polymerization of oâ€Phenylenediamine at Surface Imperfections. Journal of the Electrochemical Society, 1982, 129, 265-271.	2.9	65
92	Alternating Current Impedance Imaging of Membrane Pores Using Scanning Electrochemical Microscopy. Analytical Chemistry, 2005, 77, 5564-5569.	6.5	64
93	Microscale Confinement of Paramagnetic Molecules in Magnetic Field Gradients Surrounding Ferromagnetic Microelectrodes. Journal of Physical Chemistry B, 2001, 105, 8989-8994.	2.6	62
94	Anisotropic Diffusion in Face-Centered Cubic Opals. Nano Letters, 2004, 4, 875-880.	9.1	62
95	pH- and Ionic Strength-Controlled Cation Permselectivity in Amine-Modified Nanoporous Opal Films. Langmuir, 2006, 22, 4429-4432.	3.5	62
96	Resistive Pulse Analysis of Microgel Deformation During Nanopore Translocation. Journal of Physical Chemistry C, 2011, 115, 2999-3004.	3.1	61
97	Electrochemistry of Nanopore Electrodes in Low Ionic Strength Solutions. Journal of Physical Chemistry B, 2006, 110, 1768-1774.	2.6	60
98	Diffusional Motion of a Particle Translocating through a Nanopore. ACS Nano, 2012, 6, 1757-1765.	14.6	60
99	On the role of surface states in semiconductor electrode photoelectrochemical cells. Faraday Discussions of the Chemical Society, 1980, 70, 19.	2.2	59
100	Polymer films on electrodes. 6. Bioconductive polymers produced by incorporation of tetrathiafulvalenium in a polyelectrolyte (Nafion) matrix. Journal of the American Chemical Society, 1981, 103, 3937-3938.	13.7	59
101	Magnetic focusing of redox molecules at ferromagnetic microelectrodes. Electrochemistry Communications, 1999, 1, 319-323.	4.7	59
102	High-Speed Multipass Coulter Counter with Ultrahigh Resolution. ACS Nano, 2015, 9, 12274-12282.	14.6	59
103	Laplace Pressure of Individual H ₂ Nanobubbles from Pressure–Addition Electrochemistry. Nano Letters, 2016, 16, 6691-6694.	9.1	59
104	Nanopore Opening at Flat and Nanotip Conical Electrodes during Vesicle Impact Electrochemical Cytometry. ACS Nano, 2018, 12, 3010-3019.	14.6	59
105	Synthesis of Conducting Polymer Composite Fibers in Electrochemical Flow Cells. Journal of the Electrochemical Society, 1993, 140, 2473-2476.	2.9	58
106	Nanoscale Imaging of the Electronic Conductivity of the Native Oxide Film on Titanium Using Conducting Atomic Force Microscopy. Journal of Physical Chemistry B, 2003, 107, 9677-9680.	2.6	58
107	Glass Nanopore-Based Ion-Selective Electrodes. Analytical Chemistry, 2007, 79, 3568-3574.	6.5	57
108	A Computationally Efficient Treatment of Polarizable Electrochemical Cells Held at a Constant Potential. Journal of Physical Chemistry C, 2012, 116, 4903-4912.	3.1	57

#	Article	IF	CITATIONS
109	Base-Excision Repair Activity of Uracil-DNA Glycosylase Monitored Using the Latch Zone of α-Hemolysin. Journal of the American Chemical Society, 2013, 135, 19347-19353.	13.7	56
110	Voltammetric Determination of the Stochastic Formation Rate and Geometry of Individual H _{2,} N ₂ , and O ₂ Bubble Nuclei. ACS Nano, 2019, 13, 6330-6340.	14.6	56
111	Electrochemical Processing of Conducting Polymer Fibers. Science, 1993, 259, 957-960.	12.6	54
112	Reversed (Negative) Magnetization for Electrochemically Deposited High-Tc Thin Films of Chromium Hexacyanide Magnets. Chemistry of Materials, 1998, 10, 1386-1395.	6.7	54
113	Size-dependent electronic structure controls activity for ethanol electro-oxidation at Pt _n /indium tin oxide (n = 1 to 14). Physical Chemistry Chemical Physics, 2015, 17, 17601-17610.	2.8	54
114	The Nucleation Rate of Single O ₂ Nanobubbles at Pt Nanoelectrodes. Langmuir, 2018, 34, 7309-7318.	3.5	54
115	Sizing Individual Au Nanoparticles in Solution with Sub-Nanometer Resolution. ACS Nano, 2015, 9, 7186-7194.	14.6	53
116	Successive electron-transfers in low ionic strength solutions. Migrational flux coupling by homogeneous electron transfer reactions. Journal of Electroanalytical Chemistry, 1997, 439, 173-182.	3.8	52
117	Sensitivity and Signal Complexity as a Function of the Number of Ion Channels in a Stochastic Sensor. Analytical Chemistry, 2009, 81, 533-537.	6.5	51
118	Scanning Electrochemical Microscopy of Iontophoretic Transport in Hairless Mouse Skin. Analysis of the Relative Contributions of Diffusion, Migration, and Electroosmosis to Transport in Hair Follicles. Journal of Pharmaceutical Sciences, 2000, 89, 1537-1549.	3.3	50
119	Electrical signature of the deformation and dehydration of microgels during translocation through nanopores. Soft Matter, 2011, 7, 8035.	2.7	50
120	Imaging Microscopic Magnetohydrodynamic Flows. Analytical Chemistry, 1999, 71, 1923-1927.	6.5	49
121	Ion Transport within High Electric Fields in Nanogap Electrochemical Cells. ACS Nano, 2015, 9, 8520-8529.	14.6	49
122	Visualization and Quantification of Electrochemical H ₂ Bubble Nucleation at Pt, Au, and MoS ₂ Substrates. ACS Sensors, 2021, 6, 355-363.	7.8	48
123	Electrochemistry of Sulfur Adlayers on Ag(111). Evidence for a Concentration- and Potential-Dependent Surface-Phase Transition. The Journal of Physical Chemistry, 1996, 100, 331-338.	2.9	47
124	Direct Imaging of Molecular Transport Through Skin. Journal of Investigative Dermatology, 1995, 104, 142-145.	0.7	46
125	Electrochemical Measurement of Hydrogen and Nitrogen Nanobubble Lifetimes at Pt Nanoelectrodes. Journal of the Electrochemical Society, 2016, 163, H3160-H3166.	2.9	46
126	Electrochemistry in Nanometer-Wide Electrochemical Cells. Langmuir, 2008, 24, 2850-2855.	3.5	45

#	Article	IF	CITATIONS
127	Semiconductor Electrodes: XXXIII . Photoelectrochemistry of nâ€Type in Acetonitrile. Journal of the Electrochemical Society, 1981, 128, 1045-1055.	2.9	43
128	Effect of comproportionation on the voltammetric reduction of methyl viologen in low ionic strength solutions. Journal of Electroanalytical Chemistry, 1992, 325, 341-350.	3.8	43
129	Influence of Magnetic Fields on the Voltammetric Response of Microelectrodes in Highly Concentrated Organic Redox Solutions. Journal of the Electrochemical Society, 1995, 142, L90-L92.	2.9	43
130	Electroosmotic pore transport in human skin. Pharmaceutical Research, 2003, 20, 646-652.	3.5	43
131	Effect of the Electric Double Layer on the Activation Energy of Ion Transport in Conical Nanopores. Journal of Physical Chemistry C, 2015, 119, 24299-24306.	3.1	43
132	Polymer films on electrodes. 10. Electrochemical behavior of solution species at Nafion-tetrathiafulvalenium bromide polymers. Journal of the American Chemical Society, 1982, 104, 5862-5868.	13.7	42
133	Resistive-Pulse Detection of Multilamellar Liposomes. Langmuir, 2012, 28, 7572-7577.	3.5	42
134	Redox Cycling in Nanogap Electrochemical Cells. The Role of Electrostatics in Determining the Cell Response. Journal of Physical Chemistry C, 2016, 120, 17251-17260.	3.1	42
135	Base Flipping within the α-Hemolysin Latch Allows Single-Molecule Identification of Mismatches in DNA. Journal of the American Chemical Society, 2016, 138, 594-603.	13.7	42
136	The Dynamic Steady State of an Electrochemically Generated Nanobubble. Langmuir, 2017, 33, 1845-1853.	3.5	42
137	Tunable Negative Differential Electrolyte Resistance in a Conical Nanopore in Glass. ACS Nano, 2012, 6, 6507-6514.	14.6	41
138	Analysis of the Magnetic Force Generated at a Hemispherical Microelectrode. Analytical Chemistry, 1997, 69, 2070-2076.	6.5	40
139	Diffusiveâ^'Convective Transport into a Porous Membrane. A Comparison of Theory and Experiment Using Scanning Electrochemical Microscopy Operated in Reverse Imaging Mode. Analytical Chemistry, 2002, 74, 4577-4582.	6.5	40
140	Alternating Current Impedance Imaging of High-Resistance Membrane Pores Using a Scanning Electrochemical Microscope. Application of Membrane Electrical Shunts To Increase Measurement Sensitivity and Image Contrast. Analytical Chemistry, 2006, 78, 6535-6541.	6.5	40
141	3D Architectures for Batteries and Electrodes. Advanced Energy Materials, 2020, 10, 2002457.	19.5	40
142	Visualization of Hydrogen Evolution at Individual Platinum Nanoparticles at a Buried Interface. Journal of the American Chemical Society, 2020, 142, 8890-8896.	13.7	40
143	Analysis of voltammetric half-wave potentials in low ionic strength solutions and voltammetric measurement of ion impurity concentrations. Analytical Chemistry, 1991, 63, 2766-2771.	6.5	39
144	Scanning-tunneling-microscopy study of tip-induced transitions of dislocation-network structures on the surface of highly oriented pyrolytic graphite. Physical Review B, 1993, 47, 10823-10831.	3.2	39

#	Article	IF	CITATIONS
145	Depletion layer effects on the response of the electrochemical quartz crystal microbalance. Analytical Chemistry, 1993, 65, 3232-3237.	6.5	39
146	Visualization and analysis of electroosmotic flow in hairless mouse skin. Pharmaceutical Research, 2000, 17, 471-475.	3.5	39
147	Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes. Analytical Chemistry, 2008, 80, 2069-2076.	6.5	39
148	Single-entity electrochemistry at confined sensing interfaces. Science China Chemistry, 2020, 63, 589-618.	8.2	38
149	Scanning Electrochemical Microscopy of Membrane Transport in the Reverse Imaging Mode. Analytical Chemistry, 2001, 73, 533-539.	6.5	37
150	Quartz Nanopore Membranes for Suspended Bilayer Ion Channel Recordings. Analytical Chemistry, 2010, 82, 7259-7266.	6.5	37
151	Sequence-Specific Single-Molecule Analysis of 8-Oxo-7,8-dihydroguanine Lesions in DNA Based on Unzipping Kinetics of Complementary Probes in Ion Channel Recordings. Journal of the American Chemical Society, 2011, 133, 14778-14784.	13.7	37
152	Synthesis of a New Family of Hexakisferrocenyl Hexagons and Their Electrochemical Behavior. Journal of Organic Chemistry, 2008, 73, 8553-8557.	3.2	36
153	Nanoscale electrochemical kinetics & amp; dynamics: the challenges and opportunities of single-entity measurements. Faraday Discussions, 2018, 210, 9-28.	3.2	36
154	Effects of Instrumental Filters on Electrochemical Measurement of Singleâ€Nanoparticle Collision Dynamics. ChemElectroChem, 2018, 5, 3059-3067.	3.4	36
155	High-Performance Solid-State Lithium-Ion Battery with Mixed 2D and 3D Electrodes. ACS Applied Energy Materials, 2020, 3, 8402-8409.	5.1	35
156	Negative Differential Electrolyte Resistance in a Solid-State Nanopore Resulting from Electroosmotic Flow Bistability. ACS Nano, 2014, 8, 3023-3030.	14.6	34
157	Dynamics of a DNA Mismatch Site Held in Confinement Discriminate Epigenetic Modifications of Cytosine. Journal of the American Chemical Society, 2017, 139, 2750-2756.	13.7	34
158	Electrochemical Deposition and Reoxidation of Au at Highly Oriented Pyrolytic Graphite. Stabilization of Au Nanoparticles on the Upper Plane of Step Edges. Journal of Physical Chemistry B, 2003, 107, 451-458.	2.6	33
159	Introduction of Heterofunctional Groups onto Molecular Hexagons via Coordination-Driven Self-Assembly. Journal of Organic Chemistry, 2009, 74, 4828-4833.	3.2	32
160	Redox cycling in nanogap electrochemical cells. Current Opinion in Electrochemistry, 2018, 7, 48-53.	4.8	32
161	Voltammetric Studies beyond the Solvent Limits with Microelectrodes. Journal of the Electrochemical Society, 1986, 133, 1067-1068.	2.9	31
162	Al[sub 2]O[sub 3] Film Dissolution in Aqueous Chloride Solutions. Electrochemical and Solid-State Letters, 2003, 6, B38.	2.2	31

#	Article	IF	CITATIONS
163	Electron-Transfer Kinetics and Electric Double Layer Effects in Nanometer-Wide Thin-Layer Cells. ACS Nano, 2014, 8, 10426-10436.	14.6	31
164	Rotating Microdisk Voltammetry. Analytical Chemistry, 1995, 67, 4057-4064.	6.5	30
165	Visualization of Iontophoretic Transport Paths in Cultured and Animal Skin Models. Journal of Pharmaceutical Sciences, 1996, 85, 1186-1190.	3.3	30
166	Influence of Asymmetric Donor–Receiver ion Concentration Upon Transscleral Iontophoretic Transport. Journal of Pharmaceutical Sciences, 2005, 94, 847-860.	3.3	30
167	Nanopipettes as a tool for single nanoparticle electrochemistry. Current Opinion in Electrochemistry, 2017, 6, 4-9.	4.8	30
168	Three-Dimensional Super-resolution Imaging of Single Nanoparticles Delivered by Pipettes. ACS Nano, 2017, 11, 10529-10538.	14.6	30
169	Internal vs Fishhook Hairpin DNA: Unzipping Locations and Mechanisms in the α-Hemolysin Nanopore. Journal of Physical Chemistry B, 2014, 118, 12873-12882.	2.6	29
170	Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode. Journal of Physical Chemistry C, 2017, 121, 23564-23573.	3.1	29
171	Coupled Electron- and Phase-Transfer Reactions at a Three-Phase Interface. Journal of the American Chemical Society, 2019, 141, 18091-18098.	13.7	29
172	Atomic Force Microscopy Study of E99P69E99Triblock Copolymer Chains on Silicon Surface. Langmuir, 2000, 16, 656-661.	3.5	28
173	Mechanism of Electrostatic Gating at Conical Glass Nanopore Electrodes. Langmuir, 2008, 24, 12062-12067.	3.5	28
174	Structural Destabilization of DNA Duplexes Containing Single-Base Lesions Investigated by Nanopore Measurements. Biochemistry, 2013, 52, 7870-7877.	2.5	28
175	Scanning tunneling microscopy, atomic force microscopy, and related techniques. Analytical Chemistry, 1992, 64, 116-134.	6.5	27
176	Harnessing Energy for a Sustainable World. Journal of the American Chemical Society, 2010, 132, 4503-4505.	13.7	27
177	Interferometric Measurement of Depletion Layer Structure and Voltammetric Data in Concentrated Organic Redox Solutions. Analytical Chemistry, 1995, 67, 561-569.	6.5	26
178	Dissolution of the Native Oxide Film on Polycrystalline and Single-Crystal Aluminum in NaCl Solutions. Journal of the Electrochemical Society, 2004, 151, B479.	2.9	26
179	Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore. Biophysical Journal, 2016, 110, 306-314.	0.5	26
180	γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. Journal of the American Chemical Society, 2018, 140, 14224-14234.	13.7	26

#	Article	IF	CITATIONS
181	Electrochemical Synthesis of Individual Core@Shell and Hollow Ag/Ag ₂ S Nanoparticles. Nano Letters, 2019, 19, 5612-5619.	9.1	26
182	Shot noise sets the limit of quantification in electrochemical measurements. Current Opinion in Electrochemistry, 2020, 22, 170-177.	4.8	26
183	Electrochemically Controlled Nucleation of Single CO2Nanobubbles via Formate Oxidation at Pt Nanoelectrodes. Journal of Physical Chemistry Letters, 2020, 11, 1291-1296.	4.6	26
184	Influence of Surface Defect Structure on the Underpotential Deposition of Pb Monolayers at Ag(111). Langmuir, 1996, 12, 494-499.	3.5	25
185	Nitrogen Bubbles at Pt Nanoelectrodes in a Nonaqueous Medium: Oscillating Behavior and Geometry of Critical Nuclei. Analytical Chemistry, 2020, 92, 6408-6414.	6.5	25
186	Electrochemical Growth of Ag2S on Ag(111) Electrodes. Coulometric and X-ray Photoelectron Spectroscopic Analysis of the Stepwise Formation of the First and Second Monolayers of Ag2S. Journal of Physical Chemistry B, 1999, 103, 1960-1965.	2.6	24
187	Electrochemistry at Nanometer-Scaled Electrodes. Journal of Chemical Education, 2005, 82, 712.	2.3	24
188	Single-Molecule Titration in a Protein Nanoreactor Reveals the Protonation/Deprotonation Mechanism of a C:C Mismatch in DNA. Journal of the American Chemical Society, 2018, 140, 5153-5160.	13.7	24
189	Resistive Pulse Delivery of Single Nanoparticles to Electrochemical Interfaces. Journal of Physical Chemistry Letters, 2016, 7, 3920-3924.	4.6	23
190	Halogen chemisorption on silver(111). Scanning tunneling microscopy of coadsorbed halogen atoms. Langmuir, 1994, 10, 486-491.	3.5	22
191	Diffusion Currents in Concentrated Redox Solutions. Analytical Chemistry, 1996, 68, 581-584.	6.5	22
192	Temperature and Electrolyte Optimization of the α-Hemolysin Latch Sensing Zone for Detection of Base Modification in Double-Stranded DNA. Biophysical Journal, 2014, 107, 924-931.	0.5	22
193	Comparison of the charge-transport rate in two redox levels of polymers derived from N,N'-dibenzyl-4,4'-bipyridinium and N,N'-dialkyl-4,4'-bipyridinium. Journal of the American Chemical Society, 1984, 106, 6947-6952.	13.7	21
194	Magnetoelectrochemistry of Nitrothiophenolate-Functionalized Gold Nanoparticles. Langmuir, 2003, 19, 9446-9449.	3.5	20
195	Relationship Between Al[sub 2]O[sub 3] Film Dissolution Rate and the Pitting Potential of Aluminum in NaCl Solution. Journal of the Electrochemical Society, 2004, 151, B265.	2.9	20
196	Translocation Dynamics of Poly(styrenesulfonic acid) through an α-Hemolysin Protein Nanopore. Macromolecules, 2010, 43, 10594-10599.	4.8	20
197	Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore. ACS Nano, 2016, 10, 11127-11135.	14.6	20
198	Multipass Resistive-Pulse Observations of the Rotational Tumbling of Individual Nanorods. Journal of Physical Chemistry C, 2016, 120, 20781-20788.	3.1	20

#	Article	IF	CITATIONS
199	Imaging of stacking faults in highly oriented pyrolytic graphite using scanning tunneling microscopy. Journal of Materials Research, 1992, 7, 341-344.	2.6	19
200	Electrochemistry of Organic Redox Liquids at Elevated Pressures. The Journal of Physical Chemistry, 1996, 100, 18818-18822.	2.9	19
201	Fluorescence Microscopy of the Pressure-Dependent Structure of Lipid Bilayers Suspended across Conical Nanopores. Journal of the American Chemical Society, 2011, 133, 7810-7815.	13.7	19
202	Effect of an Electrolyte Cation on Detecting DNA Damage with the Latch Constriction of α-Hemolysin. Journal of Physical Chemistry Letters, 2014, 5, 3781-3786.	4.6	19
203	Nanomaterials in Analytical Chemistry. Analytical Chemistry, 2013, 85, 11161-11162.	6.5	18
204	Differentiation of G:C <i>vs</i> A:T and G:C <i>vs</i> G:mC Base Pairs in the Latch Zone of α-Hemolysin. ACS Nano, 2015, 9, 11325-11332.	14.6	18
205	Electric-Field-Induced Transitions of Amphiphilic Layers on Mercury Electrodes. Langmuir, 1995, 11, 4554-4563.	3.5	15
206	Simulation of Confined Primitive Electrolytes: Application of a New Method of Summing the Coulomb Field. Molecular Simulation, 1992, 9, 247-255.	2.0	13
207	Electrochemical Deposition of Polyborate Monolayers at Ag(111) Electrodes. Langmuir, 1997, 13, 6824-6828.	3.5	13
208	Electrical Current Signatures of DNA Base Modifications in Single Molecules Immobilized in the αâ€Hemolysin Ion Channel. Israel Journal of Chemistry, 2013, 53, 417-430.	2.3	13
209	Electrochemistry of single nanoparticles: general discussion. Faraday Discussions, 2016, 193, 387-413.	3.2	13
210	Single Ag nanoparticle collisions within a dual-electrode micro-gap cell. Faraday Discussions, 2018, 210, 189-200.	3.2	13
211	Phase Detection Interferometric Microscopy of Electrode Surfaces: Measurement of Localized Dissolution of Iron Microelectrodes. Journal of the Electrochemical Society, 1989, 136, 1752-1755.	2.9	12
212	Scanning tunneling microscopy of dimeric and polymeric products of electroreduced [Re(CO)3(4-vinyl,4'-methyl-2,2'-bipyridine)Cl]. Journal of the American Chemical Society, 1990, 112, 1333-1337.	13.7	12
213	Electric field induced phase transitions in scanning tunneling microscopy experiments on gold(111) surfaces. Langmuir, 1992, 8, 1955-1960.	3.5	12
214	Electrochemical processing of electrically conductive polymer fibers. Advanced Materials, 1993, 5, 575-576.	21.0	12
215	Influence of Electrophoresis Waveforms in Determining Stochastic Nanoparticle Capture Rates and Detection Sensitivity. Analytical Chemistry, 2007, 79, 6334-6340.	6.5	12
216	Microscale 2.5D Batteries. Journal of the Electrochemical Society, 2017, 164, A2500-A2503.	2.9	12

#	Article	IF	CITATIONS
217	Finite-Element Analysis of Magnetic Field Driven Transport at Inlaid Platinum Microdisk Electrodes. ChemPhysChem, 2003, 4, 212-214.	2.1	11
218	Electrochemical Generation of Individual Nanobubbles Comprising H ₂ , D ₂ , and HD. Langmuir, 2020, 36, 6073-6078.	3.5	11
219	Electrochemical Reduction of [Ni(Mebpy) ₃] ²⁺ : Elucidation of the Redox Mechanism by Cyclic Voltammetry and Steady‧tate Voltammetry in Low Ionic Strength Solutions. ChemElectroChem, 2020, 7, 1473-1479.	3.4	11
220	Effect of Nonuniform Mass Transport on Nanobubble Nucleation at Individual Pt Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 19724-19732.	3.1	11
221	Microelectrodes in Corrosion Studies: Electrodissolution and Corrosion of Copper in. Journal of the Electrochemical Society, 1986, 133, 2435-2436.	2.9	10
222	Phase-measurement interferometric microscopy of microlithographically fabricated platinum electrodes. Analytical Chemistry, 1990, 62, 1135-1138.	6.5	10
223	Electrochemistry at the Nanoscale: Tackling Old Questions, Posing New Ones. Accounts of Chemical Research, 2016, 49, 2371-2371.	15.6	10
224	Effect of Viscosity on the Collision Dynamics and Oxidation of Individual Ag Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 9068-9076.	3.1	10
225	In situ topographical imaging of electrode surfaces using high-resolution phase-measurement interferometric microscopy. Analytical Chemistry, 1990, 62, 1130-1134.	6.5	9
226	In Situ Interferometric Microscopy of Temperature- and Potential-Dependent Volume Changes of a Redox Gel. Analytical Chemistry, 1995, 67, 4446-4451.	6.5	9
227	AC Conductance of Transmembrane Protein Channels. The Number of Ionized Residue Mobile Counterions at Infinite Dilution. Journal of Physical Chemistry B, 2007, 111, 9165-9171.	2.6	9
228	A High-Pressure System for Studying Oxygen Reduction During Pt Nanoparticle Collisions. Journal of the Electrochemical Society, 2020, 167, 166507.	2.9	9
229	Scanning tunneling microscopy of the organic conductor [(.etaC5Me5)2Ru(.eta.6,.eta.6-[22](1,4)-cyclophane)][TCNQ]4. Chemistry of Materials, 1992, 4, 1082-1091.	6.7	8
230	Energetics of base flipping at a DNA mismatch site confined at the latch constriction of α-hemolysin. Faraday Discussions, 2016, 193, 471-485.	3.2	8
231	Interrogation of Base Pairing of the Spiroiminodihydantoin Diastereomers Using the α-Hemolysin Latch. Biochemistry, 2017, 56, 1596-1603.	2.5	8
232	STM Fabrication of Platinum Disks of Nanometer Dimensions. Journal of the Electrochemical Society, 1991, 138, 641-642.	2.9	6
233	Electric field induced phenomena in scanning tunneling microscopy: tip deformations and gold(111) surface phase transitions during tunneling spectroscopy experiments. Langmuir, 1993, 9, 3471-3477.	3.5	6
234	Nanopore Analysis of the 5-Guanidinohydantoin to Iminoallantoin Isomerization in Duplex DNA. Journal of Organic Chemistry, 2018, 83, 3973-3978.	3.2	5

#	Article	IF	CITATIONS
235	Electrochemical Deposition of Hydrosulfide and Ethanethiolate Adlayers on Silver(111). Voltammetric Measurement of Structural Phase Transitions During Adlayer Formation. Israel Journal of Chemistry, 1997, 37, 173-178.	2.3	4
236	From single cells to single molecules: general discussion. Faraday Discussions, 2016, 193, 141-170.	3.2	4
237	Dynamics of nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 451-479.	3.2	4
238	Electroprecipitation of Nanometer-Thick Films of Ln(OH) ₃ [Ln = La, Ce, and Lu] at Pt Microelectrodes and Their Effect on Electron-Transfer Reactions. Langmuir, 2022, 38, 8125-8134.	3.5	4
239	Scanning Tunneling Microscopy of Molecular Adsorbates. Comments on Inorganic Chemistry, 1994, 15, 171-196.	5.2	3
240	Molecular Dynamics and Hypernetted Chain Equation Studies of Soft Core Repulsions in Electrolyte Solutions. Molecular Simulation, 1994, 12, 1-21.	2.0	3
241	Processes at nanopores and bio-nanointerfaces: general discussion. Faraday Discussions, 2018, 210, 145-171.	3.2	3
242	Enhancing Lithium Insertion with Electrostatic Nanoconfinement in a Lithography Patterned Precision Cell. ACS Nano, 2019, 13, 8481-8489.	14.6	3
243	Scanning tunneling microscopy studies of organic conductors. Synthetic Metals, 1993, 55, 426-433.	3.9	2
244	Editorial – Single Entities. Analyst, The, 2012, 137, 2921.	3.5	2
245	Reactions at the nanoscale: general discussion. Faraday Discussions, 2016, 193, 265-292.	3.2	1
246	Mass-transfer correlation for flow over cylindrical microelectrodes. Industrial & Engineering Chemistry Research, 1991, 30, 264-267.	3.7	0
247	Influence of asymmetric donor–receiver ion concentration upon transscleral iontophoretic transport. J. Pharm. Sci. 94, 847–860, 2005 Journal of Pharmaceutical Sciences, 2005, 94, 2344.	3.3	0
248	A Tribute to Christian Amatore. ChemElectroChem, 2016, 3, 1965-1966.	3.4	0