
Wenxin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814743/publications.pdf Version: 2024-02-01

WENYIN WANC

#	Article	IF	CITATIONS
1	Instability, stabilization, and formulation of liquid protein pharmaceuticals. International Journal of Pharmaceutics, 1999, 185, 129-188.	2.6	932
2	Paintable and Rapidly Bondable Conductive Hydrogels as Therapeutic Cardiac Patches. Advanced Materials, 2018, 30, e1704235.	11.1	329
3	Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. British Journal of Cancer, 2011, 104, 1564-1574.	2.9	326
4	Role of adiposeâ€derived stem cells in wound healing. Wound Repair and Regeneration, 2014, 22, 313-325.	1.5	277
5	Bioapplications of hyperbranched polymers. Chemical Society Reviews, 2015, 44, 4023-4071.	18.7	258
6	Application of a microfluidic chip-based 3D co-culture to test drug sensitivity forÂindividualized treatment of lung cancer. Biomaterials, 2013, 34, 4109-4117.	5.7	236
7	lon-Sensitive "Isothermal―Responsive Polymers Prepared in Water. Journal of the American Chemical Society, 2008, 130, 10852-10853.	6.6	226
8	Injectable and Tunable Gelatin Hydrogels Enhance Stem Cell Retention and Improve Cutaneous Wound Healing. Advanced Functional Materials, 2017, 27, 1606619.	7.8	226
9	Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18283-18288.	3.3	224
10	A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomaterialia, 2018, 75, 63-74.	4.1	213
11	Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials, 2014, 35, 711-719.	5.7	205
12	Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. , 2007, 14, 64-77.		200
13	The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery. Science Advances, 2016, 2, e1600102.	4.7	163
14	Polymer gene delivery: overcoming the obstacles. Drug Discovery Today, 2013, 18, 1090-1098.	3.2	151
15	Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene, 2014, 33, 4857-4866.	2.6	136
16	Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: A comparison with corneal penetration. Current Eye Research, 1991, 10, 571-579.	0.7	130
17	Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profiles to match wound healing processes. Chemical Science, 2018, 9, 2179-2187.	3.7	123
18	Bio-resorbable polymer stents: a review of material progress and prospects. Progress in Polymer Science, 2018, 83, 79-96.	11.8	123

#	Article	IF	CITATIONS
19	Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEC-based hyperbranched copolymer and hyaluronic acid. Stem Cell Research and Therapy, 2013, 4, 32.	2.4	120
20	Controlling Chain Growth:Â A New Strategy to Hyperbranched Materials. Macromolecules, 2007, 40, 7184-7194.	2.2	118
21	Can Block Copolymers Be Synthesized by a Single-Step Chemoenzymatic Route in Supercritical Carbon Dioxide?. Journal of the American Chemical Society, 2005, 127, 2384-2385.	6.6	114
22	Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer. Acta Biomaterialia, 2014, 10, 2076-2085.	4.1	113
23	Bifunctional Hybrid Mesoporous Organoaluminosilicates with Molecularly Ordered Ethylene Groups. Journal of the American Chemical Society, 2005, 127, 790-798.	6.6	109
24	Wound dressing change facilitated by spraying zinc ions. Materials Horizons, 2020, 7, 605-614.	6.4	106
25	Shock-Absorbing and Failure Mechanisms of WS2and MoS2Nanoparticles with Fullerene-like Structures under Shock Wave Pressure. Journal of the American Chemical Society, 2005, 127, 16263-16272.	6.6	104
26	Taking tissue adhesives to the future: from traditional synthetic to new biomimetic approaches. Biomaterials Science, 2013, 1, 239-253.	2.6	104
27	Highly branched poly(β-amino ester)s for skin gene therapy. Journal of Controlled Release, 2016, 244, 336-346.	4.8	95
28	Controlled multi-vinyl monomer homopolymerization through vinyl oligomer combination as a universal approach to hyperbranched architectures. Nature Communications, 2013, 4, 1873.	5.8	94
29	miRNA delivery for skin wound healing. Advanced Drug Delivery Reviews, 2018, 129, 308-318.	6.6	94
30	Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nature Reviews Chemistry, 2020, 4, 194-212.	13.8	93
31	A highly effective gene delivery vector – hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chemical Communications, 2010, 46, 4698.	2.2	86
32	Catechol functionalized hyperbranched polymers as biomedical materials. Progress in Polymer Science, 2018, 78, 47-55.	11.8	85
33	"Oneâ€step―Preparation of Thiolâ€Ene Clickable PEGâ€Based Thermoresponsive Hyperbranched Copolymer for In Situ Crosslinking Hybrid Hydrogel. Macromolecular Rapid Communications, 2012, 33, 120-126.	2.0	84
34	3D Single Cyclized Polymer Chain Structure from Controlled Polymerization of Multi-Vinyl Monomers: Beyond Flory–Stockmayer Theory. Journal of the American Chemical Society, 2011, 133, 13130-13137.	6.6	82
35	Highly Branched Poly(β-Amino Esters): Synthesis and Application in Gene Delivery. Biomacromolecules, 2015, 16, 2609-2617.	2.6	82
36	Single Cyclized Molecule Versus Single Branched Molecule: A Simple and Efficient 3D "Knot―Polymer Structure for Nonviral Gene Delivery. Journal of the American Chemical Society, 2012, 134, 4782-4789.	6.6	81

#	Article	IF	CITATIONS
37	Highly branched Âpoly(β-amino ester)Âdelivery of minicircle DNA for transfection of neurodegenerativeÂdisease related cells. Nature Communications, 2019, 10, 3307.	5.8	80
38	Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot. Journal of Controlled Release, 2011, 152, 382-392.	4.8	79
39	Rebuilding Postinfarcted Cardiac Functions by Injecting TIIA@PDA Nanoparticle-Cross-linked ROS-Sensitive Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 2880-2890.	4.0	79
40	WS2 and MoS2 Inorganic Fullerenes—Super Shock Absorbers at Very High Pressures. Advanced Materials, 2005, 17, 1500-1503.	11.1	78
41	Highly Branched Poly(β-amino esters) for Non-Viral Gene Delivery: High Transfection Efficiency and Low Toxicity Achieved by Increasing Molecular Weight. Biomacromolecules, 2016, 17, 3640-3647.	2.6	78
42	Significance of Branching for Transfection: Synthesis of Highly Branched Degradable Functional Poly(dimethylaminoethyl methacrylate) by Vinyl Oligomer Combination. Angewandte Chemie - International Edition, 2014, 53, 6095-6100.	7.2	74
43	Thermoresponsive and Photocrosslinkable PEGMEMA-PPGMA-EGDMA Copolymers from a One-Step ATRP Synthesis. Biomacromolecules, 2009, 10, 822-828.	2.6	73
44	MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. European Journal of Surgical Oncology, 2014, 40, 1586-1594.	0.5	72
45	Poly(ethylene glycol)-Based Hyperbranched Polymer from RAFT and Its Application as a Silver-Sulfadiazine-Loaded Antibacterial Hydrogel in Wound Care. ACS Applied Materials & Interfaces, 2016, 8, 26648-26656.	4.0	70
46	Photo-Cross-Linked Hydrogels from Thermoresponsive PEGMEMA-PPGMA-EGDMA Copolymers Containing Multiple Methacrylate Groups: Mechanical Property, Swelling, Protein Release, and Cytotoxicity. Biomacromolecules, 2009, 10, 2895-2903.	2.6	69
47	A new developing class of gene delivery: messenger RNA-based therapeutics. Biomaterials Science, 2017, 5, 2381-2392.	2.6	69
48	Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems. Journal of Materials Chemistry, 2006, 16, 1751.	6.7	67
49	A biomimetic hyperbranched poly(amino ester)-based nanocomposite as a tunable bone adhesive for sternal closure. Journal of Materials Chemistry B, 2014, 2, 4067.	2.9	66
50	One-Step Chemoenzymatic Synthesis of Poly(Îμ-caprolactone-block-methyl methacrylate) in Supercritical CO2. Macromolecules, 2006, 39, 5352-5358.	2.2	65
51	"Living―Polymer Beads in Supercritical CO2. Macromolecules, 2007, 40, 2965-2967.	2.2	65
52	Synthesis and Phase Behavior of CO ₂ -Soluble Hydrocarbon Copolymer: Poly(vinyl) Tj ETQq0 0 0 rg	gBT /Qyerlo	ck 10 Tf 50 1
53	On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. Journal of Materials Chemistry B, 2015, 3, 6420-6428.	2.9	65

#	Article	IF	CITATIONS
55	Synthesis of siliceous hollow spheres with large mesopore wall structure by supercritical CO2-in-water interface templating. Chemical Communications, 2005, , 210.	2.2	62
56	Tailoring highly branched poly(β-amino ester)s: a synthetic platform for epidermal gene therapy. Chemical Communications, 2015, 51, 8473-8476.	2.2	62
57	Amine Functionalization of Collagen Matrices with Multifunctional Polyethylene Glycol Systems. Biomacromolecules, 2010, 11, 3093-3101.	2.6	58
58	Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene. Gene Therapy, 2013, 20, 1149-1157.	2.3	57
59	Supramolecularly engineered phospholipids constructed by nucleobase molecular recognition: upgraded generation of phospholipids for drug delivery. Chemical Science, 2015, 6, 3775-3787.	3.7	56
60	Acceleration of Diabetic Wound Regeneration using an In Situ–Formed Stemâ€Cellâ€Based Skin Substitute. Advanced Healthcare Materials, 2018, 7, e1800432.	3.9	56
61	Biodegradable Highly Branched Poly(β-Amino Ester)s for Targeted Cancer Cell Gene Transfection. ACS Biomaterials Science and Engineering, 2017, 3, 1283-1286.	2.6	55
62	Intraâ€aggregate Pore Characteristics: Xâ€ray Computed Microtomography Analysis. Soil Science Society of America Journal, 2012, 76, 1159-1171.	1.2	54
63	Biodegradable Thermoresponsive Microparticle Dispersions for Injectable Cell Delivery Prepared Using a Singleâ€6tep Process. Advanced Materials, 2009, 21, 1809-1813.	11.1	53
64	Dispersion Atom Transfer Radical Polymerization of Vinyl Monomers in Supercritical Carbon Dioxide. Macromolecules, 2008, 41, 8575-8583.	2.2	50
65	Preparation of cross-linked microparticles of poly(glycidyl methacrylate) by dispersion polymerization of glycidyl methacrylate using a PDMS macromonomer as stabilizer in supercritical carbon dioxide. Polymer, 2002, 43, 6653-6659.	1.8	49
66	Modular Construction of Multifunctional Bioresponsive Cell-Targeted Nanoparticles for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 156-168.	1.8	49
67	Manipulation of Transgene Expression in Fibroblast Cells by a Multifunctional Linear-Branched Hybrid Poly(l²-Amino Ester) Synthesized through an Oligomer Combination Approach. Nano Letters, 2019, 19, 381-391.	4.5	48
68	Selfâ€Immolative Polymers. Angewandte Chemie - International Edition, 2008, 47, 7804-7806.	7.2	46
69	A rapid crosslinking injectable hydrogel for stem cell delivery, from multifunctional hyperbranched polymers via RAFT homopolymerization of PEGDA. Polymer Chemistry, 2015, 6, 6182-6192.	1.9	46
70	Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. Journal of Materials Chemistry B, 2021, 9, 6326-6346.	2.9	46
71	Preparation of polymer–nanoparticle composite beads by a nanoparticle-stabilised suspension polymerisation. Journal of Materials Chemistry, 2007, 17, 4382.	6.7	44
72	Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Cardiovascular Engineering and Technology, 2015, 6, 519-532.	0.7	44

#	Article	IF	CITATIONS
73	Synthesis, characterisation and phase transition behaviour of temperature-responsive physically crosslinked poly (N-vinylcaprolactam) based polymers for biomedical applications. Materials Science and Engineering C, 2017, 79, 130-139.	3.8	44
74	DNA Immobilization and Detection on Cellulose Paper using a Surface Grown Cationic Polymer via ATRP. ACS Applied Materials & amp; Interfaces, 2012, 4, 826-831.	4.0	43
75	Controlled Polymerization of Multivinyl Monomers: Formation of Cyclized/Knotted Singleâ€Chain Polymer Architectures. Angewandte Chemie - International Edition, 2017, 56, 450-460.	7.2	43
76	A hyperbranched amphiphilic acetal polymer for pH-sensitive drug delivery. Polymer Chemistry, 2018, 9, 169-177.	1.9	42
77	A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomaterials Science, 2021, 9, 4139-4148.	2.6	41
78	Dual stimuli responsive PEG based hyperbranched polymers. Polymer Chemistry, 2010, 1, 827.	1.9	40
79	Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel. Journal of Materials Science: Materials in Medicine, 2012, 23, 25-35.	1.7	40
80	An Injectable Chitosan-Based Self-Healable Hydrogel System as an Antibacterial Wound Dressing. Materials, 2021, 14, 5956.	1.3	40
81	Double-Cross-Linked Hydrogel Strengthened by UV Irradiation from a Hyperbranched PEG-Based Trifunctional Polymer. ACS Macro Letters, 2018, 7, 509-513.	2.3	39
82	A facile synthetic route to aqueous dispersions of silver nanoparticles. Materials Letters, 2007, 61, 4906-4910.	1.3	38
83	Charge Transfer Complex Inimer: A Facile Route to Dendritic Materials. Advanced Materials, 2003, 15, 1348-1352.	11.1	37
84	Hydrolytically Degradable Hyperbranched PEGâ€Polyester Adhesive with Low Swelling and Robust Mechanical Properties. Advanced Healthcare Materials, 2015, 4, 2260-2268.	3.9	37
85	Intramolecular Cyclization Dominating Homopolymerization of Multivinyl Monomers toward Single-Chain Cyclized/Knotted Polymeric Nanoparticles. Macromolecules, 2015, 48, 6882-6889.	2.2	37
86	Development of Branched Poly(5-Amino-1-pentanol- <i>co</i> -1,4-butanediol Diacrylate) with High Gene Transfection Potency Across Diverse Cell Types. ACS Applied Materials & Interfaces, 2016, 8, 34218-34226.	4.0	37
87	A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2). Polymer International, 2011, 60, 630-634.	1.6	36
88	Hyperbranched PEGmethacrylate linear pDMAEMA block copolymer as an efficient non-viral gene delivery vector. International Journal of Pharmaceutics, 2012, 434, 99-105.	2.6	35
89	A new generation of poly(lactide/εâ€caprolactone) polymeric biomaterials for application in the medical field. Journal of Biomedical Materials Research - Part A, 2014, 102, 3573-3584.	2.1	35
90	Versatile Hyperbranched Poly(β-hydrazide ester) Macromers as Injectable Antioxidative Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 39494-39504.	4.0	35

#	Article	IF	CITATIONS
91	Copolymerization of Vinylidene Fluoride and Hexafluoropropylene in Supercritical Carbon Dioxide. Macromolecules, 2005, 38, 9135-9142.	2.2	34
92	A novel synthetic route to metal–polymer nanocomposites by in situ suspension and bulk polymerizations. European Polymer Journal, 2008, 44, 1331-1336.	2.6	34
93	Non-viral delivery of CRISPR–Cas9 complexes for targeted gene editing via a polymer delivery system. Gene Therapy, 2022, 29, 157-170.	2.3	34
94	Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Advanced Drug Delivery Reviews, 2021, 176, 113842.	6.6	34
95	Preparation of hybrid polymer nanocomposite microparticles by a nanoparticle stabilised dispersion polymerisation. Journal of Materials Chemistry, 2008, 18, 998.	6.7	33
96	Epoxy functionalised poly(ε-caprolactone): synthesis and application. Chemical Communications, 2008, , 5806.	2.2	33
97	The homo and copolymerisation of 2-(dimethylamino)ethyl methacrylate in supercritical carbon dioxide. Polymer, 2003, 44, 3803-3809.	1.8	32
98	New Thiolateâ^'Cobalt(II) Complexes for Catalytic Chain Transfer Polymerization of Methyl Methacrylate. Macromolecules, 2004, 37, 6667-6669.	2.2	32
99	Polymerization of Vinylidene Fluoride in Supercritical Carbon Dioxide:Â Effects of Poly(dimethylsiloxane) Macromonomer on Molecular Weight and Morphology of Poly(vinylidene) Tj ETQq1 1 0.:	7842314 rgl	BT ≱⁄2verloc €
100	GDNF Gene Delivery via a 2-(Dimethylamino)ethyl Methacrylate Based Cyclized Knot Polymer for Neuronal Cell Applications. ACS Chemical Neuroscience, 2013, 4, 540-546.	1.7	32
101	Covalent and Oriented Immobilization of scFv Antibody Fragments via an Engineered Glycan Moiety. Biomacromolecules, 2013, 14, 153-159.	2.6	32
102	In situ formed hybrid hydrogels from PEG based multifunctional hyperbranched copolymers: a RAFT approach. Polymer Chemistry, 2014, 5, 1838.	1.9	32
103	Synthesis of ROS scavenging microspheres from a dopamine containing poly(β-amino ester) for applications for neurodegenerative disorders. Biomaterials Science, 2016, 4, 400-404.	2.6	31
104	Efficient and Robust Highly Branched Poly(β-amino ester)/Minicircle <i>COL7A1</i> Polymeric Nanoparticles for Gene Delivery to Recessive Dystrophic Epidermolysis Bullosa Keratinocytes. ACS Applied Materials & Interfaces, 2019, 11, 30661-30672.	4.0	31
105	Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomaterials Science, 2019, 7, 4912-4943.	2.6	31
106	Main-chain degradable single-chain cyclized polymers as gene delivery vectors. Journal of Controlled Release, 2016, 244, 375-383.	4.8	30
107	Surface patterning of a novel PEGâ€functionalized polyâ€< scp>l″actide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 624-634.	1.6	30
108	An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive. Applied Materials Today, 2021, 22, 100967.	2.3	30

#	Article	IF	CITATIONS
109	A nonâ€viral gene therapy for treatment of recessive dystrophic epidermolysis bullosa. Experimental Dermatology, 2016, 25, 818-820.	1.4	29
110	Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain. Nanoscale, 2014, 6, 7526-7533.	2.8	28
111	Anticancer Drug Disulfiram for In Situ RAFT Polymerization: Controlled Polymerization, Multifacet Self-Assembly, and Efficient Drug Delivery. ACS Macro Letters, 2016, 5, 1266-1272.	2.3	28
112	Star Poly(β-amino esters) Obtained from the Combination of Linear Poly(β-amino esters) and Polyethylenimine. ACS Macro Letters, 2017, 6, 575-579.	2.3	28
113	Dispersion Polymerization of Vinylidene Fluoride in Supercritical Carbon Dioxide Using a Fluorinated Graft Maleic Anhydride Copolymer Stabilizer. Macromolecules, 2005, 38, 1542-1545.	2.2	27
114	Simultaneous Dynamic Kinetic Resolution in Combination with Enzymatic Ring-Opening Polymerization. Macromolecules, 2006, 39, 7302-7305.	2.2	27
115	Polysiloxanes polymers with hyperbranched structure and multivinyl functionality. Journal of Polymer Science Part A, 2012, 50, 629-637.	2.5	27
116	Continual Exposure to Cigarette Smoke Extracts Induces Tumor-Like Transformation of Human Nontumor Bronchial Epithelial Cells in a Microfluidic Chip. Journal of Thoracic Oncology, 2014, 9, 1091-1100.	0.5	27
117	Role of Histone Post-Translational Modifications in Inflammatory Diseases. Frontiers in Immunology, 2022, 13, 852272.	2.2	27
118	Monitoring dispersion polymerisations of methyl methacrylate in supercritical carbon dioxide. European Polymer Journal, 2003, 39, 423-428.	2.6	26
119	Coating carbon nanotubes with polymer in supercritical carbon dioxide. Chemical Communications, 2006, , 1670.	2.2	26
120	Interferonâ€induced protein 35 inhibits endothelial cell proliferation, migration and reâ€endothelialization of injured arteries by inhibiting the nuclear factorâ€kappa B pathway. Acta Physiologica, 2018, 223, e13037.	1.8	26
121	Monte Carlo Simulations of Atom Transfer Radical (Homo)polymerization of Divinyl Monomers: Applicability of Flory–Stockmayer Theory. Macromolecules, 2018, 51, 6673-6681.	2.2	26
122	Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 38918-38924.	4.0	26
123	Progress in photodynamic therapy on tumors. Laser Physics, 2008, 18, 1119-1123.	0.6	25
124	Transfection of macrophages by collagen hollow spheres loaded with polyplexes: A step towards modulating inflammation. Acta Biomaterialia, 2012, 8, 4208-4214.	4.1	25
125	Ebola Virus Does Not Block Apoptotic Signaling Pathways. Journal of Virology, 2013, 87, 5384-5396.	1.5	25
126	Bisphosphonates for the preservation of periprosthetic bone mineral density after total joint arthroplasty: a meta-analysis of 25 randomized controlled trials. Osteoporosis International, 2018, 29, 1525-1537.	1.3	25

#	Article	IF	CITATIONS
127	Cartilage-Derived Progenitor Cell-Laden Injectable Hydrogel—An Approach for Cartilage Tissue Regeneration. ACS Applied Bio Materials, 2020, 3, 4756-4765.	2.3	25
128	Single cyclized molecule structures from RAFT homopolymerization of multi-vinyl monomers. Chemical Communications, 2012, 48, 3085.	2.2	24
129	Water soluble hyperbranched polymers from controlled radical homopolymerization of PEG diacrylate. RSC Advances, 2015, 5, 33823-33830.	1.7	24
130	Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science, 2015, 44, 79-112.	11.8	24
131	Thermo- and pH-Responsive, Coacervate-Forming Hyperbranched Poly(β-amino ester)s for Selective Cell Binding. ACS Applied Materials & Interfaces, 2017, 9, 5793-5802.	4.0	24
132	Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases. Pharmaceutics, 2021, 13, 234.	2.0	24
133	A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation. Biochemical and Biophysical Research Communications, 2016, 469, 830-835.	1.0	23
134	Highly Branched poly(5-amino-1-pentanol-co-1,4-butanediol diacrylate) for High Performance Gene Transfection. Polymers, 2017, 9, 161.	2.0	23
135	Dispersion Polymerizations of Methyl Methacrylate in Supercritical Carbon Dioxide with a Novel Ester End-Capped Perfluoropolyether Stabilizer. Macromolecules, 2003, 36, 5424-5427.	2.2	22
136	Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale, 2018, 10, 8413-8421.	2.8	22
137	The Use of e-Caprolactone as a Polymerizable Solvent for the Atom Transfer Radical Polymerization of MMA at Low Temperature. Macromolecular Chemistry and Physics, 2002, 203, 968.	1.1	21
138	High molecular weight graft stabilisers for dispersion polymerisation of vinylidene fluoride in supercritical carbon dioxide: the effect of architecture. Polymer, 2005, 46, 10626-10636.	1.8	21
139	Supramolecular Fluorescent Nanoparticles Constructed via Multiple Non ovalent Interactions for the Detection of Hydrogen Peroxide in Cancer Cells. Chemistry - A European Journal, 2015, 21, 11427-11434.	1.7	21
140	Recent research on stimulated emission depletion microscopy for reducing photobleaching. Journal of Microscopy, 2018, 271, 4-16.	0.8	21
141	Brushlike Cationic Polymers with Low Charge Density for Gene Delivery. Biomacromolecules, 2018, 19, 1410-1415.	2.6	21
142	The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage. Chemical Communications, 2012, 48, 585-587.	2.2	20
143	Insights into relevant mechanistic aspects about the induction period of Cu ⁰ /Me ₆ TREN-mediated reversible-deactivation radical polymerization. Chemical Communications, 2015, 51, 14435-14438.	2.2	20
144	Hydrogels from dextran and soybean oil by UV photoâ€polymerization. Journal of Applied Polymer Science, 2015, 132, .	1.3	20

#	Article	IF	CITATIONS
145	Structural Design of Robust and Biocompatible Photonic Hydrogels from an In Situ Cross-Linked Hyperbranched Polymer System. Chemistry of Materials, 2018, 30, 6091-6098.	3.2	20
146	Simultaneous Realization of Superoleophobicity and Strong Substrate Adhesion in Water via a Unique Segment Orientation Mechanism. Advanced Materials, 2022, 34, e2106908.	11.1	20
147	Poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> -glycolide) Dispersions Containing Pluronics: from Particle Preparation to Temperature-Triggered Aggregation. Langmuir, 2008, 24, 7761-7768.	1.6	19
148	A facile one-pot synthesis of acrylated hyaluronic acid. Chemical Communications, 2018, 54, 1081-1084.	2.2	19
149	Beyond Branching: Multiknot Structured Polymer for Gene Delivery. Biomacromolecules, 2014, 15, 4520-4527.	2.6	18
150	A knot polymer mediated non-viral gene transfection for skin cells. Biomaterials Science, 2016, 4, 92-95.	2.6	18
151	Clinical benefits of autologous haematopoietic stem cell transplantation in type 1 diabetes patients. Diabetes and Metabolism, 2018, 44, 341-345.	1.4	18
152	Nanoâ€Structured Polymerâ€Silica Composite Derived from a Marine Diatom via Deactivation Enhanced Atom Transfer Radical Polymerization Grafting. Small, 2014, 10, 469-473.	5.2	17
153	Supported ATRP of fluorinated methacrylates in supercritical carbon dioxide: preparation of scCO2 soluble polymers with low catalytic residues. Chemical Communications, 2008, , 5803.	2.2	16
154	Thermoresponsive hyperbranched polymers via <i>In Situ</i> RAFT copolymerization of pegâ€based monomethacrylate and dimethacrylate monomers. Journal of Polymer Science Part A, 2013, 51, 3751-3761.	2.5	16
155	Gene therapy: pursuing restoration of dermal adhesion in recessive dystrophic epidermolysis bullosa. Experimental Dermatology, 2014, 23, 1-6.	1.4	16
156	Magnetically Controllable Polymer Nanotubes from a Cyclized Crosslinker for Site-Specific Delivery of Doxorubicin. Scientific Reports, 2015, 5, 17478.	1.6	16
157	Hyperbranched PEG-based multi-NHS polymer and bioconjugation with BSA. Polymer Chemistry, 2017, 8, 1283-1287.	1.9	16
158	Cyclic poly(β-amino ester)s with enhanced gene transfection activity synthesized through intra-molecular cyclization. Chemical Communications, 2022, 58, 2136-2139.	2.2	16
159	One-step seed dispersion polymerisation in supercritical carbon dioxide. Chemical Communications, 2005, , 3939.	2.2	15
160	A Chinese Mandarin translation and validation of the Myocardial Infarction Dimensional Assessment Scale (MIDAS). Quality of Life Research, 2006, 15, 1243-1249.	1.5	15
161	A fluorescently labeled, hyperbranched polymer synthesized from DE-ATRP for the detection of DNA hybridization. Polymer Chemistry, 2012, 3, 332-334.	1.9	15
162	Nonviral Methods for Inducing Pluripotency to Cells. BioMed Research International, 2013, 2013, 1-6.	0.9	15

#	Article	IF	CITATIONS
163	Is it ATRP or SET-LRP? part I: Cu ⁰ &Cu ^{II} /PMDETA – mediated reversible – deactivation radical polymerization. RSC Advances, 2014, 4, 61687-61690.	1.7	15
164	Can Flory-Stockmayer theory be applied to predict conventional free radical polymerization of multivinyl monomers? A study via Monte Carlo simulations. Science China Chemistry, 2018, 61, 319-327.	4.2	15
165	Reverse Atom-Transfer Radical Polymerization at Room Temperature. Macromolecular Rapid Communications, 2001, 22, 439-443.	2.0	14
166	Involvement of fatty acid metabolism in the hepatotoxicity induced by divalproex sodium. Human and Experimental Toxicology, 2012, 31, 1092-1101.	1.1	14
167	Liposomal surface coatings of metal stents for efficient non-viral gene delivery to the injured vasculature. Journal of Controlled Release, 2013, 167, 109-119.	4.8	14
168	Bacteriaâ€Resistant Single Chain Cyclized/Knotted Polymer Coatings. Angewandte Chemie - International Edition, 2019, 58, 10616-10620.	7.2	14
169	Prevention of Bioprosthetic Heart Valve Calcification: Strategies and Outcomes. Current Medicinal Chemistry, 2014, 21, 2553-2564.	1.2	14
170	Dispersion Catalytic Chain Transfer Polymerizations of Methyl Methacrylate in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2005, 44, 8654-8658.	1.8	12
171	Kartogenin mediates cartilage regeneration by stimulating the IL-6/Stat3-dependent proliferation of cartilage stem/progenitor cells. Biochemical and Biophysical Research Communications, 2020, 532, 385-392.	1.0	12
172	Green Synthetic Approach for Photo-Cross-Linkable Methacryloyl Hyaluronic Acid with a Tailored Substitution Degree. Biomacromolecules, 2020, 21, 2229-2235.	2.6	12
173	Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery. ACS Chemical Neuroscience, 2021, 12, 1178-1188.	1.7	12
174	Controlled homopolymerization of multi-vinyl monomers: dendritic polymers synthesized via an optimized ATRA reaction. Chemical Communications, 2013, 49, 10124.	2.2	11
175	An acetal-based polymeric crosslinker with controlled pH-sensitivity. RSC Advances, 2016, 6, 9604-9611.	1.7	11
176	Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation. Polymers, 2017, 9, 443.	2.0	11
177	pHâ€Responsive Hyperbranched Copolymers from Oneâ€Pot RAFT Copolymerization. Macromolecular Materials and Engineering, 2012, 297, 1175-1183.	1.7	10
178	An antibody fragment functionalized dendritic PEGylated poly(2-(dimethylamino)ethyl diacrylate) as a vehicle of exogenous microRNA. Drug Delivery and Translational Research, 2012, 2, 406-414.	3.0	10
179	Direct â€`in situ', low VOC, high yielding, CO2expanded phase catalytic chain transfer polymerisation: towards scale-up. Dalton Transactions, 2013, 42, 127-136.	1.6	10
180	A reliable method for detecting complexed DNA in vitro. Nanoscale, 2010, 2, 2718.	2.8	9

#	Article	IF	CITATIONS
181	GSH-responsive polymeric micelles based on the thio–ene reaction for controlled drug release. RSC Advances, 2016, 6, 80896-80904.	1.7	9
182	Short poly(ethylene glycol) block initiation of poly(<scp>l</scp> â€lactide) diâ€block copolymers: a strategy for tuning the degradation of resorbable devices. Polymer International, 2018, 67, 726-738.	1.6	9
183	Folic acid and rhodamine labelled pH responsive hyperbranched polymers: Synthesis, characterization and cell uptake studies. European Polymer Journal, 2019, 120, 109259.	2.6	9
184	A Mendelian randomization study on the role of serum parathyroid hormone and 25-hydroxyvitamin D in osteoarthritis. Osteoarthritis and Cartilage, 2021, 29, 1282-1290.	0.6	9
185	An in vitro approach for production of non-scar minicircle DNA vectors. Journal of Biotechnology, 2013, 166, 84-87.	1.9	8
186	Protection Against Ischemia-Reperfusion Injury in Aged Liver Donor by the Induction of Exogenous Human Telomerase Reverse Transcriptase Gene. Transplantation Proceedings, 2014, 46, 1567-1572.	0.3	8
187	Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multiâ€walled carbon nanotubes. Journal of Interdisciplinary Nanomedicine, 2016, 1, 9-18.	3.6	8
188	Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. Nanoscale Advances, 2020, 2, 4498-4509.	2.2	8
189	Development of Minicircle Vectors Encoding COL7A1 Gene with Human Promoters for Non-Viral Gene Therapy for Recessive Dystrophic Epidermolysis Bullosa. International Journal of Molecular Sciences, 2021, 22, 12774.	1.8	8
190	Thermal-responsive and photocrosslinkable hyperbranched polymers synthesised by deactivation enhanced ATRP and RAFT polymerisations. Journal of Controlled Release, 2008, 132, e48-e50.	4.8	7
191	Limb ischemic preconditioning attenuates cerebral ischemic injury in rat model. Perfusion (United) Tj ETQq1 1 0	.784314 r 0.5	gBT ₇ /Overloc
192	Human parvovirus B19 infection induced pure red cell aplasia in liver transplant recipients. International Journal of Clinical Practice, 2015, 69, 29-34.	0.8	7
193	Non-viral xylosyltransferase-1 siRNA delivery as an effective alternative to chondroitinase in an in vitro model of reactive astrocytes. Neuroscience, 2016, 339, 267-275.	1.1	7
194	3D Bioprinting of stimuli-responsive polymers synthesised from DE-ATRP into soft tissue replicas. Bioprinting, 2018, 9, 37-43.	2.9	7
195	The Effect Acetic Acid has on Poly(<i>N</i> -Vinylcaprolactam) LCST for Biomedical Applications. Polymer-Plastics Technology and Engineering, 2018, 57, 1165-1174.	1.9	7
196	Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 991.	2.0	7
197	In situ Forming Hyperbranched PEG—Thiolated Hyaluronic Acid Hydrogels With Honey-Mimetic Antibacterial Properties. Frontiers in Bioengineering and Biotechnology, 2021, 9, 742135.	2.0	7
198	<i>In situ</i> -crosslinked hydrogel-induced experimental glaucoma model with persistent ocular hypertension and neurodegeneration. Biomaterials Science, 2022, 10, 5006-5017.	2.6	7

#	Article	IF	CITATIONS
199	Branched polystyrenes from suspension "Strathclyde―polymerization using a vulcanization accelerator as a chain transfer agent. Polymer Chemistry, 2019, 10, 885-890.	1.9	6
200	Qualitative Analysis and Componential Differences of Chemical Constituents in Taxilli Herba from Different Hosts by UFLC-Triple TOF-MS/MS. Molecules, 2021, 26, 6373.	1.7	6
201	Comparison of the Therapeutic Effects of Native and Anionic Nanofibrillar Cellulose Hydrogels for Full-Thickness Skin Wound Healing. Micro, 2021, 1, 194-214.	0.9	6
202	Microscopic spacial effect on the dispersion polymerization in scCO2. European Polymer Journal, 2007, 43, 663-667.	2.6	5
203	Kontrollierte Polymerisation von Multivinylâ€Monomeren: Bildung einer cyclischen/verknoteten Einzelkettenâ€Polymerarchitektur. Angewandte Chemie, 2017, 129, 462-473.	1.6	5
204	Biodegradable and Biocompatible PDLLA-PEG1k-PDLLA Diacrylate Macromers: Synthesis, Characterisation and Preparation of Soluble Hyperbranched Polymers and Crosslinked Hydrogels. Processes, 2017, 5, 18.	1.3	5
205	A Hybrid Injectable and Selfâ€Healable Hydrogel System as 3D Cell Culture Scaffold. Macromolecular Bioscience, 2021, 21, e2100079.	2.1	5
206	Corneal penetration of 5-fluorouracil and its improvement by prodrug derivatization in the albino rabbit: implication in glaucoma filtration surgery. Current Eye Research, 1991, 10, 87-97.	0.7	4
207	An ex-vivo multiple sclerosis model of inflammatory demyelination using hyperbranched polymer. Biomaterials, 2013, 34, 5872-5882.	5.7	4
208	Synthesis of polymer-silica hybrid microparticles with defined geometry using surface initiated atom transfer radical polymerization. Polymer Chemistry, 2015, 6, 3014-3017.	1.9	4
209	Star Polymers from Singleâ€Chain Cyclized/Knotted Nanoparticles as a Core. Macromolecular Chemistry and Physics, 2018, 219, 1700473.	1.1	4
210	Advanced Polymers for Nonviral Gene Delivery. , 2019, , 311-364.		4
211	Resveratrolâ€Loaded Poly(<scp>d</scp> , <scp>l</scp> â€Lactideâ€ <i>Co</i> â€Glycolide) Microspheres Integrated in a Hyaluronic Acid Injectable Hydrogel for Cartilage Regeneration. Advanced NanoBiomed Research, 2022, 2, .	1.7	4
212	Study on the surface grafting of polypropylene fibers. Journal of Applied Polymer Science, 2006, 99, 734-737.	1.3	3
213	Alleviating the Ischemia-Reperfusion Injury of Donor Liver by Transfection of Exogenous hTERT Genes. Transplantation Proceedings, 2009, 41, 1499-1503.	0.3	3
214	PEG based hyperbranched polymeric hollow nanospheres. Nanotechnology, 2011, 22, 065604.	1.3	3
215	In situ formation of crosslinked core–corona polymeric nanoparticles from a novel hyperbranched core. Polymer Chemistry, 2012, 3, 2807.	1.9	3
216	CBL0137 administration suppresses human hepatocellular carcinoma cells proliferation and induces apoptosis associated with multiple cell death related proteins. Neoplasma, 2020, 67, 547-556.	0.7	3

#	Article	IF	CITATIONS
217	Well-Defined Polyethylene Glycol Microscale Hydrogel Blocks Containing Gold Nanorods for Dual Photothermal and Chemotherapeutic Therapy. Pharmaceutics, 2022, 14, 551.	2.0	3
218	Highly branched poly(β-amino ester)s with narrow molecular weight distribution: Fractionation and gene transfection activity. Chinese Chemical Letters, 2023, 34, 107627.	4.8	3
219	Pre-exposure of Cells to Cationic Lipids Enhances Transgene Delivery and Expression in a Tissue Culture Cell Line. Journal of Drug Targeting, 1999, 7, 207-211.	2.1	2
220	Modified Sauvé–Kapandji procedure for restoration of forearm rotation in devascularized hands. Irish Journal of Medical Science, 2014, 183, 643-647.	0.8	2
221	A 12-week subchronic intramuscular toxicity study of risperidone-loaded microspheres in rats. Human and Experimental Toxicology, 2015, 34, 205-223.	1.1	2
222	Proteomics of Tear in Inactive Thyroid-Associated Ophthalmopathy. Acta Endocrinologica, 2021, 17, 291-303.	0.1	2
223	Modulating Drug Release from Short Poly(ethylene glycol) Block Initiated Poly(L-lactide) Di-block Copolymers. Pharmaceutical Research, 2023, 40, 1697-1707.	1.7	2
224	In situ–formed bioactive hydrogels for delivery of stem cells and biomolecules for wound healing. , 2016, , 289-307.		1
225	The relationship between serum 25â€hydroxyvitamin-D level and sweat function in patients with type 2 diabetes mellitus. Journal of Endocrinological Investigation, 2022, 45, 361-368.	1.8	1
226	A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	2.1	1
227	ClmU inhibitor from the roots of <i>Euphorbia ebracteolata</i> as an anti-tuberculosis agent. RSC Advances, 2022, 12, 18266-18273.	1.7	1
228	The 24th European Conference on Biomaterials: Facts & Figures. Journal of Materials Science: Materials in Medicine, 2012, 23, 3-7.	1.7	0
229	A NOVEL ROLE OF PLASMA MEMBRANE CALCIUM ATPASE 4 AS A NEGATIVE-REGULATOR OF VEGF-INDUCED ANGIOGENESIS. Heart, 2014, 100, A17.1-A17.	1.2	Ο
230	Peripheral blood <scp>CD</scp> 4 ⁺ cell <scp>ATP</scp> activity measurement to predict <scp>HCC</scp> recurrence post― <scp>DCD</scp> liver transplant. International Journal of Clinical Practice, 2016, 70, 11-16.	0.8	0
231	Bacteriaâ€Resistant Single Chain Cyclized/Knotted Polymer Coatings. Angewandte Chemie, 2019, 131, 10726-10730.	1.6	0
232	E-064â€Remote non-flow related intracranial aneurysms (IAs) associated with dural arteriovenous shunts (DAVSs) – incidence, clinical presentation, treatment and outcome. a case series and review of the literature. , 2019, , .		0
233	The Research and Application of the Nano Rare Earth Fluorescent Probes in the Ferulic Acid Detection. , 2018, , .		0