Christiane Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-faceted enhancement of full-thickness skin wound healing by treatment with autologous micro skin tissue columns. Scientific Reports, 2021, 11, 1688.	1.6	17
2	Photobiomodulation Response From 660 nm is Different and More Durable Than That From 980 nm. Lasers in Surgery and Medicine, 2021, 53, 1279-1293.	1.1	11
3	MagneTEskin—Reconstructing skin by magnetically induced assembly of autologous microtissue cores. Science Advances, 2021, 7, eabj0864.	4.7	4
4	Purinergic P2Y2 receptors modulate endothelial sprouting. Cellular and Molecular Life Sciences, 2020, 77, 885-901.	2.4	17
5	Skin Microcolumns as a Source of Paracrine Signaling Factors. Advances in Wound Care, 2020, 9, 174-183.	2.6	3
6	Light-Based Devices for Wound Healing. Current Dermatology Reports, 2020, 9, 261-276.	1.1	3
7	When Wounds Are Good for You: The Regenerative Capacity of Fractional Resurfacing and Potential Utility in Chronic Wound Prevention. Advances in Wound Care, 2019, 8, 679-691.	2.6	6
8	The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models. Frontiers in Physiology, 2018, 9, 1130.	1.3	40
9	Improvement of adipose tissue–derived cells by low-energy extracorporeal shock wave therapy. Cytotherapy, 2017, 19, 1079-1095.	0.3	32
10	Desmin enters the nucleus of cardiac stem cells and modulates Nkx2.5 expression by participating in transcription factor complexes that interact with the <i>nkx2.5</i> gene. Biology Open, 2016, 5, 140-153.	0.6	21
11	A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia, 2015, 24, 251-265.	4.1	150
12	Shock Wave Treatment Enhances Cell Proliferation and Improves Wound Healing by ATP Release-coupled Extracellular Signal-regulated Kinase (ERK) Activation. Journal of Biological Chemistry, 2014, 289, 27090-27104.	1.6	134
13	In vitro extracorporeal shock wave treatment enhances stemness and preserves multipotency of rat and human adipose-derived stem cells. Cytotherapy, 2014, 16, 1666-1678.	0.3	45
14	Reconsidering pluripotency tests: Do we still need teratoma assays?. Stem Cell Research, 2013, 11, 552-562.	0.3	76
15	Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation. Human Molecular Genetics, 2012, 21, 1049-1061.	1.4	21
16	Self-Organization Phenomena in Embryonic Stem Cell-Derived Embryoid Bodies: Axis Formation and Breaking of Symmetry during Cardiomyogenesis. Cells Tissues Organs, 2012, 195, 377-391.	1.3	39
17	Renal differentiation of amniotic fluid stem cells: perspectives for clinical application and for studies on specific human genetic diseases. European Journal of Clinical Investigation, 2012, 42, 677-684.	1.7	11
18	Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nature Protocols, 2010, 5, 1081-1095.	5.5	70

CHRISTIANE FUCHS

#	Article	IF	CITATIONS
19	Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Human Molecular Genetics, 2010, 19, 3320-3331.	1.4	70
20	Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Human Molecular Genetics, 2009, 18, 3298-3310.	1.4	49
21	New insights into the role of the tuberous sclerosis genes in leukemia. Leukemia Research, 2009, 33, 883-885.	0.4	6
22	Induction of mesenchymal/epithelial marker expression in human amniotic fluid stem cells. Reproductive BioMedicine Online, 2009, 19, 838-846.	1.1	39
23	Expression of mTOR pathway proteins in human amniotic fluid stem cells. International Journal of Molecular Medicine, 2009, 23, 779-84.	1.8	11
24	The mTOR pathway and its role in human genetic diseases. Mutation Research - Reviews in Mutation Research, 2008, 659, 284-292.	2.4	156
25	Changes in Elastic Moduli of Fibrin Hydrogels Within the Myogenic Range Alter Behavior of Murine C2C12 and Human C25 Myoblasts Differently. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5