Claire Longuet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4814093/publications.pdf

Version: 2024-02-01

471509 377865 1,181 39 17 34 citations h-index g-index papers 41 41 41 1232 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Silicone-recycled pyrolyzed fillers for enhanced thermal - and flame - resistant silicone elastomers. Polymer Degradation and Stability, 2022, 200, 109947.	5.8	1
2	Thermal degradation, flammability, and potential toxicity of polymer nanocomposites., 2021,, 343-373.		1
3	Cationic Polymerization of Hexamethylcyclotrisiloxane in Excess Water. Molecules, 2021, 26, 4402.	3.8	3
4	Influence of Density on Foam Collapse under Burning. Polymers, 2021, 13, 13.	4. 5	6
5	Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling. Composites Part B: Engineering, 2019, 157, 163-172.	12.0	9
6	Experimental and numerical thermo-mechanical analysis of the influence of thermoplastic slabs installation on the assessment of their fire hazard. Fire Safety Journal, 2019, 108, 102850.	3.1	7
7	Assessment of event based surveillance in cross border areas in South East Europe. International Journal of Infectious Diseases, 2019, 79, 34.	3.3	O
8	Evaluation of nanosilica emission in polydimethylsiloxane composite during incineration. Journal of Hazardous Materials, 2019, 371, 415-422.	12.4	12
9	Chemical treatments of flax fibers – Control of the diffusion of molecules into the fiber structure. Industrial Crops and Products, 2019, 132, 430-439.	5.2	8
10	Physical, morphological and chemical modification of Al-based nanofillers in by-products of incinerated nanocomposites and related biological outcome. Journal of Hazardous Materials, 2019, 365, 405-412.	12.4	14
11	Method to characterize the fire behavior of materials assemblies. Fire and Materials, 2018, 42, 627-637.	2.0	4
12	Correlation between process and silica dispersion/distribution into composite: Impact on mechanical properties and Weibull statistical analysis. Polymer Testing, 2018, 70, 92-101.	4.8	14
13	End-of-life incineration of nanocomposites: new insights into nanofiller partitioning into by-products and biological outcomes of airborne emission and residual ash. Environmental Science: Nano, 2018, 5, 1951-1964.	4.3	9
14	Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management. Journal of Physics: Conference Series, 2017, 838, 012024.	0.4	4
15	Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 2016, 128, 228-236.	5 . 8	42
16	Influence of the composition of PMMA nanocomposites on gaseous effluents emitted during combustion. Polymer Degradation and Stability, 2015, 113, 197-207.	5.8	5
17	Behavior and Fate of Halloysite Nanotubes (HNTs) When Incinerating PA6/HNTs Nanocomposite. Environmental Science & Technology, 2015, 49, 5450-5457.	10.0	31
18	Influence of carbon nanotubes on fire behaviour and aerosol emitted during combustion of thermoplastics. Fire and Materials, 2014, 38, 46-62.	2.0	17

#	Article	IF	CITATIONS
19	Thermal degradation, flammability, and potential toxicity of polymer nanocomposites., 2014,, 278-310.		3
20	FTIR–PCFC coupling: A new method for studying the combustion of polymers. Combustion and Flame, 2014, 161, 1398-1407.	5.2	19
21	Calcium and aluminum-based fillers as flame-retardant additives inÂsilicone matrices. III. Investigations on fire reaction. Polymer Degradation and Stability, 2013, 98, 2021-2032.	5.8	29
22	Polycarbonate nanocomposite with improved fire behavior, physical and psychophysical transparency. European Polymer Journal, 2013, 49, 319-327.	5.4	30
23	Influence of a treated kaolinite on the thermal degradation and flame retardancy of poly(methyl) Tj ETQq1 1 0.78	34314 rgBT 5.2	/Overlock
24	Comparison of Surface and Bulk Properties of Pendant and Hybrid Fluorosilicones. Advances in Silicon Science, 2012, , 115-178.	0.6	11
25	Thermal degradation and fire behavior of thermoset resins modified with phosphorus containing styrene. Polymer Degradation and Stability, 2012, 97, 2602-2610.	5.8	19
26	Combination effect of polyhedral oligomeric silsesquioxane (POSS) and a phosphorus modified PMMA, flammability and thermal stability properties. Materials Chemistry and Physics, 2012, 136, 762-770.	4.0	28
27	Effect of aminobisphosphonated copolymer on the thermal stability and flammability of poly(methyl) Tj ETQq1 1	0.784314	rgBT /Overl
28	Barrier effect of flame retardant systems in poly(methyl methacrylate): Study of the efficiency of the surface treatment by octylsilane of silica nanoparticles in combination with phosphorous fire retardant additives. Fire and Materials, 2012, 36, 590-602.	2.0	16
29	Theoretical and empirical approaches to understanding the effect of phosphonate groups on the thermal degradation for two chemically modified PMMA. European Polymer Journal, 2012, 48, 604-612.	5.4	28
30	Aerosols emitted by the combustion of polymers containing nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	33
31	Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices II. Analyses on composite residues from an industrial-based pyrolysis test. Polymer Degradation and Stability, 2011, 96, 1562-1572.	5.8	35
32	Thermal degradation and fire behaviour of unsaturated polyesters filled with metallic oxides. Polymer Degradation and Stability, 2011, 96, 67-75.	5.8	93
33	Combining cone calorimeter and PCFC to determine the mode of action of flameâ€retardant additives. Polymers for Advanced Technologies, 2011, 22, 1091-1099.	3.2	58
34	Calcium and aluminium-based fillers as flame-retardant additives in silicone matrices. I. Blend preparation and thermal properties. Polymer Degradation and Stability, 2010, 95, 1911-1919.	5.8	77
35	Physically crosslinked fluorosilicone elastomers obtained by self- assembly and template polycondensation of tailored building blocks. Journal of Materials Chemistry, 2010, 20, 10269.	6.7	6
36	Flame retardancy of silicone-based materials. Polymer Degradation and Stability, 2009, 94, 465-495.	5.8	434

CLAIRE LONGUET

#	Article	IF	CITATIONS
37	The NANOFEU project: Objectives and tools. Journal of Physics: Conference Series, 2009, 170, 012034.	0.4	2
38	Copolycondensation of Regular Functional Silane and Siloxane in Aqueous Emulsion Using B(C ₆ F ₅) ₃ as a Catalyst. Macromolecular Chemistry and Physics, 2007, 208, 1883-1892.	2.2	27
39	Oligomer model to explain the coloration of TEA and discoloration catalytic treatment. Journal of Molecular Catalysis A, 2005, 234, 59-62.	4.8	5